Rena M. Meadows
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rena M. Meadows.
Molecular Pain | 2011
Brian S. Schmutzler; Shannon Roy; Sherry K. Pittman; Rena M. Meadows; Cynthia M. Hingtgen
BackgroundThe GDNF family ligands (GFLs) are regulators of neurogenic inflammation and pain. We have previously shown that GFLs increase the release of the sensory neuron neuropeptide, calcitonin gene-related peptide (CGRP) from isolated mouse DRG.ResultsInhibitors of the mitogen-activated protein kinase (MAPK) pathway abolished the enhancement of CGRP release by GDNF. Neurturin-induced enhancement in the stimulated release of CGRP, used as an indication of sensory neuronal sensitization, was abolished by inhibition of the phosphatidylinositol-3 kinase (PI-3K) pathway. Reduction in Ret expression abolished the GDNF-induced sensitization, but did not fully inhibit the increase in stimulus-evoked release of CGRP caused by neurturin or artemin, indicating the presence of Ret-independent GFL-induced signaling in sensory neurons. Integrin β-1 and NCAM are involved in a component of Ret-independent GFL signaling in sensory neurons.ConclusionsThese data demonstrate the distinct and variable Ret-dependent and Ret-independent signaling mechanisms by which GFLs induce sensitization of sensory neurons. Additionally, there is a clear disconnect between intracellular signaling pathway activation and changes in sensory neuronal function.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2014
Richard J. Batka; Todd J. Brown; Kathryn P. Mcmillan; Rena M. Meadows; Kathryn J. Jones; Melissa M. Haulcomb
Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild‐type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed‐dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. Anat Rec, 297:1839–1864, 2014.
The Journal of Comparative Neurology | 2015
Melissa M. Haulcomb; Nichole A. Mesnard-Hoaglin; Richard J. Batka; Rena M. Meadows; Whitney M. Miller; Kathryn P. Mcmillan; Todd J. Brown; Virginia M. Sanders; Kathryn J. Jones
Disease progression rates among patients with amyotrophic lateral sclerosis (ALS) vary greatly. Although the majority of affected individuals survive 3–5 years following diagnosis, some subgroups experience a more rapidly progressing form, surviving less than 1 year, and other subgroups experience slowly progressing forms, surviving nearly 50 years. Genetic heterogeneity and environmental factors pose significant barriers in investigating patient progression rates. Similar to the case for humans, variation in survival within the mSOD1 mouse has been well documented, but different progression rates have not been investigated. The present study identifies two subgroups of B6SJL mSOD1G93A mice with different disease progression rates, a fast progression group (FPG) and slow progression group, as evidenced by differences in the rate of motor function decline. In addition, increased disease‐associated gene expression within the FPG facial motor nucleus confirmed the presence of a more severe phenotype. We hypothesize that a more severe disease phenotype could be the result of 1) an earlier onset of axonal disconnection with a consistent degeneration rate or 2) a more severe or accelerated degenerative process. We performed a facial nerve transection axotomy in both mSOD1 subgroups prior to disease onset as a method to standardize the axonal disconnection. Instead of leading to comparable gene expression in both subgroups, this standardization did not eliminate the severe phenotype in the FPG facial nucleus, suggesting that the FPG phenotype is the result of a more severe or accelerated degenerative process. We theorize that these mSOD1 subgroups are representative of the rapid and slow disease phenotypes often experienced in ALS. J. Comp. Neurol. 523:2752–2768, 2015.
Restorative Neurology and Neuroscience | 2018
Deborah O. Setter; Melissa M. Haulcomb; Taylor Beahrs; Rena M. Meadows; Nicole Schartz; Sara K. Custer; Virginia M. Sanders; Kathryn J. Jones
BACKGROUND When nerve transection is performed on adult rodents, a substantial population of neurons survives short-term disconnection from target, and the immune system supports this neuronal survival, however long-term survival remains unknown. Understanding the effects of permanent axotomy on cell body survival is important as target disconnection is the first pathological occurrence in fatal motoneuron diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). OBJECTIVE The goal of this study was to determine if facial motoneurons (FMN) could survive permanent target disconnection up to 26 weeks post-operation (wpo) after facial nerve axotomy (FNA). In addition, the potentially additive effects of immunodeficiency and motoneuron disease on post-axotomy FMN survival were examined. METHODS This study included three wild type (WT) mouse strains (C57BL/6J, B6SJL, and FVB/NJ) and three experimental models (RAG-2-/-: immunodeficiency; mSOD1: ALS; Smn-/-/SMN2+/+: SMA). All animals received a unilateral FNA, and FMN survival was quantified at early and extended post-operative timepoints. RESULTS In the C57BL/6J WT group, FMN survival significantly decreased at 10 wpo (55±6%), and then remained stable out to 26 wpo (47±6%). In the RAG-2-/- and mSOD1 groups, FMN death occurred much earlier at 4 wpo, and survival plateaued at approximately 50% at 10 wpo. The SMA model and other WT strains also exhibited approximately 50% FMN survival after FNA. CONCLUSION These results indicate that immunodeficiency and motoneuron disease accelerate axotomy-induced neuron death, but do not increase total neuron death in the context of permanent target disconnection. This consistent finding of a target disconnection-resilient motoneuron population is prevalent in other peripheral nerve injury models and in neurodegenerative disease models as well. Characterization of the distinct populations of vulnerable and resilient motoneurons may reveal new therapeutic approaches for injury and disease.
Restorative Neurology and Neuroscience | 2018
Chandler L. Walker; Rena M. Meadows; Stephanie Merfeld-Clauss; Yansheng Du; Keith L. March; Kathryn J. Jones
BACKGROUND Amyotrophic lateral sclerosis (ALS) is devastating, leading to paralysis and death. Disease onset begins pre-symptomatically through spinal motor neuron (MN) axon die-back from musculature at ∼47 days of age in the mutant superoxide dismutase 1 (mSOD1G93A) transgenic ALS mouse model. This period may be optimal to assess potential therapies. We previously demonstrated that post-symptomatic adipose-derived stem cell conditioned medium (ASC-CM) treatment is neuroprotective in mSOD1G93A mice. We hypothesized that early disease onset treatment could ameliorate neuromuscular junction (NMJ) disruption. OBJECTIVE To determine whether pre-symptom administration of ASC-CM prevents early NMJ disconnection. METHODS We confirmed the NMJ denervation time course in mSOD1G93A mice using co-labeling of neurofilament and post-synaptic acetylcholine receptors (AchR) by α-bungarotoxin. We determined whether ASC-CM ameliorates early NMJ loss in mSOD1G93A mice by systemically administering 200μl ASC-CM or vehicle medium daily from post-natal days 35 to 47 and quantifying intact NMJs through co-labeling of neurofilament and synaptophysin with α-bungarotoxin in gastrocnemius muscle. RESULTS Intact NMJs were significantly decreased in 47 day old mSOD1G93A mice (p < 0.05), and daily systemic ASC-CM prevented disease-induced NMJ denervation compared to vehicle treated mice (p < 0.05). CONCLUSIONS Our results lay the foundation for testing the long-term neurological benefits of systemic ASC-CM therapy in the mSOD1G93A mouse model of ALS.
Neural Regeneration Research | 2017
Melissa M. Haulcomb; Rena M. Meadows; Whitney M. Miller; Kathryn P. Mcmillan; MeKenzie J Hilsmeyer; Xuefu Wang; Wesley T. Beaulieu; Stephanie L. Dickinson; Todd J. Brown; Virginia M Sanders; Kathryn J. Jones
Amyotrophic lateral sclerosis is a motoneuron degenerative disease that is challenging to diagnose and presents with considerable variability in survival. Early identification and enhanced understanding of symptomatic patterns could aid in diagnosis and provide an avenue for monitoring disease progression. Use of the mSOD1G93A mouse model provides control of the confounding environmental factors and genetic heterogeneity seen in amyotrophic lateral sclerosis patients, while investigating underlying disease-induced changes. In the present study, we performed a longitudinal behavioral assessment paradigm and identified an early hindlimb symptom, resembling the common gait abnormality foot drop, along with an accompanying forelimb compensatory mechanism in the mSOD1G93A mouse. Following these initial changes, mSOD1 mice displayed a temporary hindlimb compensatory mechanism resembling an exaggerated steppage gait. As the disease progressed, these compensatory mechanisms were not sufficient to sustain fundamental locomotor parameters and more severe deficits appeared. We next applied these initial findings to investigate the inherent variability in B6SJL mSOD1G93A survival. We identified four behavioral variables that, when combined in a cluster analysis, identified two subpopulations with different disease progression rates: a fast progression group and a slow progression group. This behavioral assessment paradigm, with its analytical approaches, provides a method for monitoring disease progression and detecting mSOD1 subgroups with different disease severities. This affords researchers an opportunity to search for genetic modifiers or other factors that likely enhance or slow disease progression. Such factors are possible therapeutic targets with the potential to slow disease progression and provide insight into the underlying pathology and disease mechanisms.
The FASEB Journal | 2015
Rena M. Meadows; Jessica Muldoon; Melissa M. Haulcomb; Taylor Beahrs; Nicole Schartz; Deborah Olmstead; Richard J. Batka; Virginia M. Sanders; Kathryn J. Jones
PMC | 2015
Melissa M. Haulcomb; Nichole A. Mesnard-Hoaglin; Richard J. Batka; Rena M. Meadows; Whitney M. Miller; Kathryn P. Mcmillan; Todd J. Brown; Virginia M. Sanders; Kathryn J. Jones
The FASEB Journal | 2014
Rena M. Meadows; Kate McMillan; Richard J. Batka; Todd J. Brown; Dale Sengelaub; Kathryn J. Jones
PMC | 2014
Richard J. Batka; Todd J. Brown; Kathryn P. Mcmillan; Rena M. Meadows; Kathryn J. Jones; Melissa M. Haulcomb