Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renae Hovey is active.

Publication


Featured researches published by Renae Hovey.


Science | 2016

Climate-driven regime shift of a temperate marine ecosystem

Thomas Wernberg; Scott Bennett; Russell C. Babcock; Thibaut de Bettignies; Katherine Cure; Martial Depczynski; Francois Dufois; Jane Fromont; Christopher J. Fulton; Renae Hovey; Euan S. Harvey; Thomas H. Holmes; Gary A. Kendrick; Ben Radford; Julia Santana-Garcon; Benjamin J. Saunders; Dan A. Smale; Mads S. Thomsen; Chenae A. Tuckett; Fernando Tuya; Mathew A. Vanderklift; Shaun K. Wilson

No turning back? Ecosystems over time have endured much disturbance, yet they tend to remain intact, a characteristic we call resilience. Though many systems have been lost and destroyed, for systems that remain physically intact, there is debate as to whether changing temperatures will result in shifts or collapses. Wernburg et al. show that extreme warming of a temperate kelp forest off Australia resulted not only in its collapse, but also in a shift in community composition that brought about an increase in herbivorous tropical fishes that prevent the reestablishment of kelp. Thus, many systems may not be resilient to the rapid climate change that we face. Science, this issue p. 169 Rapid warming tropicalizes a temperate kelp forest. Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.


BioScience | 2012

The Central Role of Dispersal in the Maintenance and Persistence of Seagrass Populations

Gary A. Kendrick; Michelle Waycott; Tim J. B. Carruthers; Marion L. Cambridge; Renae Hovey; Siegfried L. Krauss; Paul S. Lavery; Donald H. Les; Ryan J. Lowe; Oriol Mascaró i Vidal; Jillian Lean Sim Ooi; Robert J. Orth; David O. Rivers; Leonardo Ruiz-Montoya; Elizabeth A. Sinclair; John Statton; Jent Kornelis van Dijk; Jennifer J. Verduin

Global seagrass losses parallel significant declines observed in corals and mangroves over the past 50 years. These combined declines have resulted in accelerated global losses to ecosystem services in coastal waters. Seagrass meadows can be extensive (hundreds of square kilometers) and long-lived (thousands of years), with the meadows persisting predominantly through vegetative (clonal) growth. They also invest a large amount of energy in sexual reproduction. In this article, we explore the role that sexual reproduction, pollen, and seed dispersal play in maintaining species distributions, genetic diversity, and connectivity among seagrass populations. We also address the relationship between long-distance dispersal, genetic connectivity, and the maintenance of genetic diversity that may enhance resilience to stresses associated with seagrass loss. Our reevaluation of seagrass dispersal and recruitment has altered our perception of the importance of long-distance dispersal and has revealed extensive dispersal at scales much larger than was previously thought possible.


Biological Reviews | 2017

Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses

Gary A. Kendrick; Robert J. Orth; John Statton; Renae Hovey; Leonardo Ruiz Montoya; Ryan J. Lowe; Siegfried L. Krauss; Elizabeth A. Sinclair

Accurate estimation of connectivity among populations is fundamental for determining the drivers of population resilience, genetic diversity, adaptation and speciation. However the separation and quantification of contemporary versus historical connectivity remains a major challenge. This review focuses on marine angiosperms, seagrasses, that are fundamental to the health and productivity of temperate and tropical coastal marine environments globally. Our objective is to understand better the role of sexual reproduction and recruitment in influencing demographic and genetic connectivity among seagrass populations through an integrated multidisciplinary assessment of our present ecological, genetic, and demographic understanding, with hydrodynamic modelling of transport. We investigate (i) the demographic consequences of sexual reproduction, dispersal and recruitment in seagrasses, (ii) contemporary transport of seagrass pollen, fruits and seed, and vegetative fragments with a focus on hydrodynamic and particle transport models, and (iii) contemporary genetic connectivity among seagrass meadows as inferred through the application of genetic markers. New approaches are reviewed, followed by a summary outlining future directions for research: integrating seascape genetic approaches; incorporating hydrodynamic modelling for dispersal of pollen, seeds and vegetative fragments; integrating studies across broader geographic ranges; and incorporating non‐equilibrium modelling. These approaches will lead to a more integrated understanding of the role of contemporary dispersal and recruitment in the persistence and evolution of seagrasses.


PLOS ONE | 2014

Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef

Tom C. L. Bridge; Renata Ferrari; Mitch Bryson; Renae Hovey; Will F. Figueira; Stefan B. Williams; Oscar Pizarro; Alastair R. Harborne; Maria Byrne

High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.


Marine and Freshwater Research | 2012

A comparative assessment of approaches and outcomes for seagrass revegetation in Shark Bay and Florida Bay

John Statton; Kingsley W. Dixon; Renae Hovey; Gary A. Kendrick

Here, we review the literature to evaluate seagrass revegetation projects focussed on Posidonia australis and Amphibolis antarctica, the main affected species in Shark Bay in the World Heritage Area in Western Australia, together with projects from Florida Bay, an analogous system with a long history of seagrass revegetation. We assessed the effectiveness of anchoring planting units, plant-unit density and size on planting-unit survival. We found no positive trends in our assessment, suggesting that there is no discrete technique, approach or technology that could be used with confidence to deliver cost-effective, scalable revegetation. Of concern was that revegetation success was evaluated over comparatively short time frames (1–3 years), driven by the strict time frames or deadlines of governing grant funding and commercial activities, leading to concerns that long-term revegetation outcomes may be difficult to assess with confidence. Several factors influenced revegetation outcomes which were grouped into three ‘filter’ categories; abiotic, biotic and socioeconomic. We recommend that future revegetation programs involving seagrass have greater emphasis on understanding how these filters act independently or collectively to drive successful revegetation as well as developing cost-effective, proven and scalable technology supported by longer-term monitoring to ensure revegetation programs do achieve the desired ecological outcomes.


Scientific Data | 2015

Australian sea-floor survey data, with images and expert annotations.

Michael Bewley; Ariell Friedman; Renata Ferrari; Nicole A. Hill; Renae Hovey; Ns Barrett; Oscar Pizarro; Will F. Figueira; L Meyer; Russell C. Babcock; Lynda M. Bellchambers; Maria Byrne; Stefan B. Williams

This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australias Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research.


Plant and Soil | 2016

Seagrass derived organic matter influences biogeochemistry, microbial communities, and seedling biomass partitioning in seagrass sediments

Matthew W. Fraser; John Statton; Renae Hovey; Bonnie Laverock; Gary A. Kendrick

AimsSeedling establishment is a crucial life history stage in seagrasses, yet factors that affect seedling health are poorly characterized. We investigated if organic matter (OM) additions to sediments provided nutritional benefits for seagrass seedlings through microbial degradation.MethodsWe tested the effects of sedimentary OM additions on Posidonia australis seedlings growing in tank cultures. We focussed on sediment biogeochemical processes and microbial communities that may impact seedling growth and physiology.ResultsEnrichment of sediments with OM changed microbial community composition (DNA-ARISA) and a significant increase in hydrolytic enzyme expression. Total seedling biomass did not differ between OM treatments, but above:belowground biomass increased with OM enrichment. Nitrogen and phosphorus concentration of seagrass leaves was lower with increasing OM.ConclusionsSeagrass derived OM has been considered a refractory store of carbon, yet here we show its deposition into sediments significantly alters belowground conditions. Remineralization of the OM changes both physical and chemical nature of sediments that leads to greater biochemical activity, change in microbial communities and greater investment into above ground photosynthetic biomass. The presence of OM may assist seagrass seedling survival during early development by enhancing root branching and stability in sediments, but is unlikely to provide nutritional benefits.


PLOS ONE | 2012

Modelling Deep Water Habitats to Develop a Spatially Explicit, Fine Scale Understanding of the Distribution of the Western Rock Lobster, Panulirus cygnus

Renae Hovey; Kimberly P. Van Niel; Lynda M. Bellchambers; Matthew B. Pember

Background The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Methods and Findings Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D2 of 64 and an 80% correct classification. Conclusions Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.


international conference on image processing | 2016

Coral classification with hybrid feature representations

Arif Mahmood; Mohammed Bennamoun; Senjian An; Ferdous Ahmed Sohel; Farid Boussaid; Renae Hovey; Gary A. Kendrick; Robert B. Fisher

Coral reefs exhibit significant within-class variations, complex between-class boundaries and inconsistent image clarity. This makes coral classification a challenging task. In this paper, we report the application of generic CNN representations combined with hand-crafted features for coral reef classification to take advantage of the complementary strengths of these representation types. We extract CNN based features from patches centred at labelled pixels at multiple scales. We use texture and color based hand-crafted features extracted from the same patches to complement the CNN features. Our proposed method achieves a classification accuracy that is higher than the state-of-art methods on the MLC benchmark dataset for corals.


Marine Pollution Bulletin | 2015

Strategy for assessing impacts in ephemeral tropical seagrasses

Renae Hovey; John Statton; Matthew W. Fraser; Leonardo Ruiz-Montoya; Andrea Zavala‐Perez; Max Rees; James A. Stoddart; Gary A. Kendrick

We investigated the phenology and spatial patterns in Halophila decipiens by assessing biomass, reproduction and seed density in ~400 grab samples collected across nine sites (8 to 14 m water depth) between June 2011 and December 2012. Phenology correlated with light climate which is governed by the summer monsoon (wet period). During the wet period, sedimentary seed banks prevailed, varying spatially at both broad and fine scales, presenting a source of propagules for re-colonisation following the unfavourable growing conditions of the monsoon. Spatial patterns in H. decipiens biomass following monsoon conditions were highly variable within a landscape that largely comprised potential seagrass habitat. Management strategies for H. decipiens and similar transient species must recognise the high temporal and spatial variability of these populations and be underpinned by a framework that emphasises vulnerability assessments of different life stages instead of relying solely on thresholds for standing stock at fixed reference sites.

Collaboration


Dive into the Renae Hovey's collaboration.

Top Co-Authors

Avatar

Gary A. Kendrick

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

John Statton

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Russell C. Babcock

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Sinclair

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Farid Boussaid

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Mohammed Bennamoun

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Senjian An

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ammar Mahmood

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Lynda M. Bellchambers

Government of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge