Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Belfort-DeAguiar is active.

Publication


Featured researches published by Renata Belfort-DeAguiar.


JAMA | 2013

Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways.

Kathleen A. Page; Owen Chan; Jagriti Arora; Renata Belfort-DeAguiar; James Dzuira; Brian Roehmholdt; Gary W. Cline; Sarita Naik; Rajita Sinha; R. Todd Constable; Robert S. Sherwin

IMPORTANCE Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety. OBJECTIVE To study neurophysiological factors that might underlie associations between fructose consumption and weight gain. DESIGN, SETTING, AND PARTICIPANTS Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design. MAIN OUTCOME MEASURES Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion. RESULTS There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (-5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P = .01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P < .05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex (P < .05 significance threshold, FWE whole-brain corrected). In whole-brain voxel-level analyses, there were no significant differences between direct comparisons of fructose vs glucose sessions following correction for multiple comparisons. Fructose vs glucose ingestion resulted in lower peak levels of serum glucose (mean difference, 41.0 mg/dL [95% CI, 27.7-54.5]; P < .001), insulin (mean difference, 49.6 μU/mL [95% CI, 38.2-61.1]; P < .001), and glucagon-like polypeptide 1 (mean difference, 2.1 pmol/L [95% CI, 0.9-3.2]; P = .01). CONCLUSION AND RELEVANCE In a series of exploratory analyses, consumption of fructose compared with glucose resulted in a distinct pattern of regional CBF and a smaller increase in systemic glucose, insulin, and glucagon-like polypeptide 1 levels.


Journal of Clinical Investigation | 2011

Circulating glucose levels modulate neural control of desire for high-calorie foods in humans

Kathleen A. Page; Dongju Seo; Renata Belfort-DeAguiar; Cheryl Lacadie; James Dzuira; Sarita Naik; Suma Amarnath; R. Todd Constable; Robert S. Sherwin; Rajita Sinha

Obesity is a worldwide epidemic resulting in part from the ubiquity of high-calorie foods and food images. Whether obese and nonobese individuals regulate their desire to consume high-calorie foods differently is not clear. We set out to investigate the hypothesis that circulating levels of glucose, the primary fuel source for the brain, influence brain regions that regulate the motivation to consume high-calorie foods. Using functional MRI (fMRI) combined with a stepped hyperinsulinemic euglycemic-hypoglycemic clamp and behavioral measures of interest in food, we have shown here that mild hypoglycemia preferentially activates limbic-striatal brain regions in response to food cues to produce a greater desire for high-calorie foods. In contrast, euglycemia preferentially activated the medial prefrontal cortex and resulted in less interest in food stimuli. Indeed, higher circulating glucose levels predicted greater medial prefrontal cortex activation, and this response was absent in obese subjects. These findings demonstrate that circulating glucose modulates neural stimulatory and inhibitory control over food motivation and suggest that this glucose-linked restraining influence is lost in obesity. Strategies that temper postprandial reductions in glucose levels might reduce the risk of overeating, particularly in environments inundated with visual cues of high-calorie foods.


The Journal of Clinical Endocrinology and Metabolism | 2013

Increased Brain Transport and Metabolism of Acetate in Hypoglycemia Unawareness

Barbara Gulanski; Henk M. De Feyter; Kathleen A. Page; Renata Belfort-DeAguiar; Graeme F. Mason; Douglas L. Rothman; Robert S. Sherwin

CONTEXT Intensive insulin therapy reduces the risk for long-term complications in patients with type 1 diabetes mellitus (T1DM) but increases the risk for hypoglycemia-associated autonomic failure (HAAF), a syndrome that includes hypoglycemia unawareness and defective glucose counterregulation (reduced epinephrine and glucagon responses to hypoglycemia). OBJECTIVE The objective of the study was to address mechanisms underlying HAAF, we investigated whether nonglucose fuels such as acetate, a monocarboxylic acid (MCA), can support cerebral energetics during hypoglycemia in T1DM individuals with hypoglycemia unawareness. DESIGN Magnetic resonance spectroscopy was used to measure brain transport and metabolism of [2-(13)C]acetate under hypoglycemic conditions. SETTING The study was conducted at the Yale Center for Clinical Investigation Hospital Research Unit, Yale Magnetic Resonance Research Center. PATIENTS AND OTHER PARTICIPANTS T1DM participants with moderate to severe hypoglycemia unawareness (n = 7), T1DM controls without hypoglycemia unawareness (n = 5), and healthy nondiabetic controls (n = 10) participated in the study. MAIN OUTCOME MEASURE(S) Brain acetate concentrations, (13)C percent enrichment of glutamine and glutamate, and absolute rates of acetate metabolism were measured. RESULTS Absolute rates of acetate metabolism in the cerebral cortex were 1.5-fold higher among T1DM/unaware participants compared with both control groups during hypoglycemia (P = .001). Epinephrine levels of T1DM/unaware subjects were significantly lower than both control groups (P < .05). Epinephrine levels were inversely correlated with levels of cerebral acetate use across the entire study population (P < .01), suggesting a relationship between up-regulated brain MCA use and HAAF. CONCLUSION Increased MCA transport and metabolism among T1DM individuals with hypoglycemia unawareness may be a mechanism to supply the brain with nonglucose fuels during episodes of acute hypoglycemia and may contribute to the syndrome of hypoglycemia unawareness, independent of diabetes.


JCI insight | 2017

The human brain produces fructose from glucose

Janice J. Hwang; Lihong Jiang; Muhammad Hamza; Feng Dai; Renata Belfort-DeAguiar; Gary W. Cline; Douglas L. Rothman; Graeme F. Mason; Robert S. Sherwin

Fructose has been implicated in the pathogenesis of obesity and type 2 diabetes. In contrast to glucose, CNS delivery of fructose in rodents promotes feeding behavior. However, because circulating plasma fructose levels are exceedingly low, it remains unclear to what extent fructose crosses the blood-brain barrier to exert CNS effects. To determine whether fructose can be endogenously generated from glucose via the polyol pathway (glucose → sorbitol → fructose) in human brain, 8 healthy subjects (4 women/4 men; age, 28.8 ± 6.2 years; BMI, 23.4 ± 2.6; HbA1C, 4.9% ± 0.2%) underwent 1H magnetic resonance spectroscopy scanning to measure intracerebral glucose and fructose levels during a 4-hour hyperglycemic clamp (plasma glucose, 220 mg/dl). Using mixed-effects regression model analysis, intracerebral glucose rose significantly over time and differed from baseline at 20 to 230 minutes. Intracerebral fructose levels also rose over time, differing from baseline at 30 to 230 minutes. The changes in intracerebral fructose were related to changes in intracerebral glucose but not to plasma fructose levels. Our findings suggest that the polyol pathway contributes to endogenous CNS production of fructose and that the effects of fructose in the CNS may extend beyond its direct dietary consumption.


PLOS ONE | 2015

Fructose Levels Are Markedly Elevated in Cerebrospinal Fluid Compared to Plasma in Pregnant Women

Janice J. Hwang; Andrea Johnson; Gary W. Cline; Renata Belfort-DeAguiar; Denis Snegovskikh; Babar Khokhar; Christina S. Han; Robert S. Sherwin

Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.


American Journal of Physiology-endocrinology and Metabolism | 2018

Humans with obesity have disordered brain responses to food images during physiological hyperglycemia

Renata Belfort-DeAguiar; Dongju Seo; Cheryl Lacadie; Sarita Naik; Christian P. Schmidt; Wai Lam; Janice J. Hwang; Todd Constable; Rajita Sinha; Robert S. Sherwin

Blood glucose levels influence brain regulation of food intake. This study assessed the effect of mild physiological hyperglycemia on brain response to food cues in individuals with obesity (OB) versus normal weight individuals (NW). Brain responses in 10 OB and 10 NW nondiabetic healthy adults [body mass index: 34 (3) vs. 23 (2) kg/m2, means (SD), P < 0.0001] were measured with functional MRI (blood oxygen level-dependent contrast) in combination with a two-step normoglycemic-hyperglycemic clamp. Participants were shown food and nonfood images during normoglycemia (~95 mg/dl) and hyperglycemia (~130 mg/dl). Plasma glucose levels were comparable in both groups during the two-step clamp ( P = not significant). Insulin and leptin levels were higher in the OB group compared with NW, whereas ghrelin levels were lower (all P < 0.05). During hyperglycemia, insula activity showed a group-by-glucose level effect. When compared with normoglycemia, hyperglycemia resulted in decreased activity in the hypothalamus and putamen in response to food images ( P < 0.001) in the NW group, whereas the OB group exhibited increased activity in insula, putamen, and anterior and dorsolateral prefrontal cortex (aPFC/dlPFC; P < 0.001). These data suggest that OB, compared with NW, appears to have disruption of brain responses to food cues during hyperglycemia, with reduced insula response in NW but increased insula response in OB, an area involved in food perception and interoception. In a post hoc analysis, brain activity in obesity appears to be associated with dysregulated motivation (striatum) and inappropriate self-control (aPFC/dlPFC) to food cues during hyperglycemia. Hyperstimulation for food and insensitivity to internal homeostatic signals may favor food consumption to possibly play a role in the pathogenesis of obesity.


JCI insight | 2017

Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM

Janice J. Hwang; Lihong Jiang; Muhammad Hamza; Elizabeth Sanchez Rangel; Feng Dai; Renata Belfort-DeAguiar; Lisa Parikh; Brian B. Koo; Douglas L. Rothman; Graeme F. Mason; Robert S. Sherwin

In rodent models, obesity and hyperglycemia alter cerebral glucose metabolism and glucose transport into the brain, resulting in disordered cerebral function as well as inappropriate responses to homeostatic and hedonic inputs. Whether similar findings are seen in the human brain remains unclear. In this study, 25 participants (9 healthy participants; 10 obese nondiabetic participants; and 6 poorly controlled, insulin- and metformin-treated type 2 diabetes mellitus (T2DM) participants) underwent 1H magnetic resonance spectroscopy scanning in the occipital lobe to measure the change in intracerebral glucose levels during a 2-hour hyperglycemic clamp (glucose ~220 mg/dl). The change in intracerebral glucose was significantly different across groups after controlling for age and sex, despite similar plasma glucose levels at baseline and during hyperglycemia. Compared with lean participants, brain glucose increments were lower in participants with obesity and T2DM. Furthermore, the change in brain glucose correlated inversely with plasma free fatty acid (FFA) levels during hyperglycemia. These data suggest that obesity and poorly controlled T2DM progressively diminish brain glucose responses to hyperglycemia, which has important implications for understanding not only the altered feeding behavior, but also the adverse neurocognitive consequences associated with obesity and T2DM.


Diabetes, Obesity and Metabolism | 2017

Evaluation of the counter-regulatory responses to hypoglycaemia in patients with type 1 diabetes during opiate receptor blockade with naltrexone: NAIKet al .

Sarita Naik; Renata Belfort-DeAguiar; Anne-Sophie Sejling; Barbara Szepietowska; Robert S. Sherwin

Hypoglycaemia is the major limiting factor in achieving optimal glycaemic control in people with type 1 diabetes (T1DM), especially intensively treated patients with impaired glucose counter‐regulation during hypoglycaemia. Naloxone, an opiate receptor blocker, has been reported to enhance the acute counter‐regulatory response to hypoglycaemia when administered intravenously in humans. The current study was undertaken to investigate the oral formulation of the long‐acting opiate antagonist, naltrexone, and determine if it could have a similar effect, and thus might be useful therapeutically in treatment of T1DM patients with a high risk of hypoglycaemia.


Diabetes Care | 2015

Inhaled Formoterol Diminishes Insulin-Induced Hypoglycemia in Type 1 Diabetes

Renata Belfort-DeAguiar; Sarita Naik; Janice J. Hwang; Barbara Szepietowska; Robert S. Sherwin

OBJECTIVE Hypoglycemia is one of the major factors limiting implementation of tight glycemic control in patients with type 1 diabetes and is associated with increased morbidity and mortality during intensive insulin treatment. β-2 Adrenergic receptor (AR) agonists have been reported to diminish nocturnal hypoglycemia; however, whether long-acting inhaled β-2 AR agonists could potentially be used to treat or prevent hypoglycemia has not been established. RESEARCH DESIGN AND METHODS Seven patients with type 1 diabetes and seven healthy control subjects received inhaled formoterol (48 μg), a highly specific β-2 AR agonist, or a placebo during a hyperinsulinemic-hypoglycemic clamp study to evaluate its capacity to antagonize the effect of insulin. In a second set of studies, five subjects with type 1 diabetes received inhaled formoterol to assess its effect as a preventive therapy for insulin-induced hypoglycemia. RESULTS During a hyperinsulinemic-hypoglycemic clamp, compared with placebo, inhaled formoterol decreased the glucose infusion rate required to maintain plasma glucose at a target level by 45–50% (P < 0.05). There was no significant effect on glucagon, epinephrine, cortisol, or growth hormone release (P = NS). Furthermore, in volunteers with type 1 diabetes 1 h after increasing basal insulin delivery twofold, glucose levels dropped to 58 ± 5 mg/dL, whereas hypoglycemia was prevented by inhaled formoterol (P < 0.001). CONCLUSIONS Inhalation of the β-2 AR–specific agonist formoterol may be useful in the prevention or treatment of acute hypoglycemia and thus may help patients with type 1 diabetes achieve optimal glucose control more safely.


Journal of Clinical Investigation | 2018

Hypoglycemia unawareness in type 1 diabetes suppresses brain responses to hypoglycemia

Janice J. Hwang; Lisa Parikh; Cheryl Lacadie; Dongju Seo; Wai Lam; Muhammad Hamza; Christian P. Schmidt; Feng Dai; Anne-Sophie Sejling; Renata Belfort-DeAguiar; R. Todd Constable; Rajita Sinha; Robert S. Sherwin

BACKGROUND. Among nondiabetic individuals, mild glucose decrements alter brain activity in regions linked to reward, motivation, and executive control. Whether these effects differ in type 1 diabetes mellitus (T1DM) patients with and without hypoglycemia awareness remains unclear. METHODS. Forty-two individuals (13 healthy control [HC] subjects, 16 T1DM individuals with hypoglycemia awareness [T1DM-Aware], and 13 T1DM individuals with hypoglycemia unawareness [T1DM-Unaware]) underwent blood oxygen level–dependent functional MRI brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dl)-hypoglycemic (60 mg/dl) clamp for assessment of neural responses to mild hypoglycemia. RESULTS. Mild hypoglycemia in HC subjects altered activity in the caudate, insula, prefrontal cortex, and angular gyrus, whereas T1DM-Aware subjects showed no caudate and insula changes, but showed altered activation patterns in the prefrontal cortex and angular gyrus. Most strikingly, in direct contrast to HC and T1DM-Aware subjects, T1DM-Unaware subjects failed to show any hypoglycemia-induced changes in brain activity. These findings were also associated with blunted hormonal counterregulatory responses and hypoglycemia symptom scores during mild hypoglycemia. CONCLUSION. In T1DM, and in particular T1DM-Unaware patients, there is a progressive blunting of brain responses in cortico-striatal and fronto-parietal neurocircuits in response to mild-moderate hypoglycemia. These findings have implications for understanding why individuals with impaired hypoglycemia awareness fail to respond appropriately to falling blood glucose levels. FUNDING. This study was supported in part by NIH grants R01DK020495, P30 DK045735, K23DK109284, K08AA023545. The Yale Center for Clinical Investigation is supported by an NIH Clinical Translational Science Award (UL1 RR024139).

Collaboration


Dive into the Renata Belfort-DeAguiar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Parikh

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Wai Lam

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muhammad Hamza

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge