Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Carvalho Silva is active.

Publication


Featured researches published by Renata Carvalho Silva.


European Journal of Pharmaceutical Sciences | 2013

New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles

Samuel Vidal Mussi; Renata Carvalho Silva; Mônica Cristina de Oliveira; Carolina Madeira Lucci; Ricardo Bentes Azevedo; Lucas Antônio Miranda Ferreira

This work aimed to develop solid lipid nanoparticles (SLNs) loaded with doxorubicin evaluating the influence of docosahexaenoic acid (DHA), a polyunsaturated fatty acid that enhances the activity of anticancer drugs, on drug encapsulation efficiency (EE). The SLN were characterized for size, zeta potential, entrapment efficiency (EE) and drug release. Studies of in vitro antitumor activity and cellular uptake were also conducted. The reduction in particle size (from 127 ± 14 to 94 ± 1 nm) and negative charges were obtained for SLN loaded with DHA and triethanolamine (TEA), amine used to increase the solubility of doxorubicin in melted lipid. The EE was significantly improved from 36 ± 4% to 99 ± 2% for SLN without and with DHA at 0.4%, respectively. The doxorubicin release in a slightly acid medium (pH 5.0) was higher than that observed at physiological pH. The in vitro studies clearly showed the higher cytotoxicity of doxorubicin-DHA-loaded SLN than free doxorubicin+DHA on human lung tumor cell line (A549) and the improved cellular uptake achieved with the drug encapsulation can be an explanation. These findings suggest that DHA-doxorubicin-loaded SLN is a promising alternative for the treatment of cancer.


Cryobiology | 2009

Cryopreservation of swine ovarian tissue: Effect of different cryoprotectants on the structural preservation of preantral follicle oocytes ☆

E.N. Borges; Renata Carvalho Silva; D.O. Futino; C.M.C. Rocha-Junior; C.A. Amorim; S.N. Báo; Carolina Madeira Lucci

The present study aimed to test different cryoprotectants on cryopreservation of pig ovarian tissue. Pig ovaries (n=3) were collected at a local slaughterhouse. From each ovary, ten cortex samples were taken. One was immediately fixed (control) and another placed in short-term tissue incubation (STTI control). The other 8 samples were cryopreserved, in pairs, using 4 different cryoprotectants: dimethyl sulphoxide (Me2SO - 1.5M), ethylene glycol (EG - 1.5M), propanediol (PROH - 1.5M) and glycerol (GLY - 10%), all with 0.4% sucrose. Samples were slow cooled and stored in liquid nitrogen for 7 days. After thawing and cryoprotectant removal, one sample from each treatment was immediately fixed and the other was placed in short-term tissue incubation (STTI) for 2h and then fixed. Samples were processed for histology and transmission electron microscopy. The percentages of morphologically normal follicles (MNF) in cryopreserved tissue using Me2SO (67.0+/-4.9), EG (81.8+/-1.4) and PROH (55.9+/-9.9) were significantly lower (P<0.05) than observed in fresh control tissue (97.7+/-1.2). When ovarian tissue was cryopreserved with GLY, no morphologically normal follicles could be found (0%). After STTI, PROH showed a significantly lower percentage of MNF when compared with all other treatments and the control. After ultrastructural analysis, follicles cryopreserved with Me2SO and EG showed some small alterations, but no signs of advanced degeneration. Overall, these were similar to follicles from the control group. In conclusion, it is possible to cryopreserve preantral follicles from pig ovarian tissue using Me2SO or EG.


Theriogenology | 2011

Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development : lipid component evolution

Renata Carvalho Silva; Sônia N. Báo; José Luiz P.R. Jivago; Carolina Madeira Lucci

The objective of this study was to characterize the morphometry and ultrastructure of porcine preantral and antral follicles, especially the lipid component evolution. Ovarian tissue was processed for light microscopy. Ovarian tissue and dissected antral follicles (< 2, 2-4, and 4-6 mm) were also processed for transmission electron microscopy using routine methods and using an osmium-imidazole method for lipid detection. Primordial follicles (34 ± 5 μm in diameter, mean ± SD) had one layer of flattened-cuboidal granulosa cells around the oocyte, primary follicles (40 ± 7 μm) had a single layer of cuboidal granulosa cells around the oocyte, and secondary follicles (102 ± 58 μm) had two or more layers of cuboidal granulosa cells around the oocyte. Preantral follicle oocytes had many round mitochondria and both rough and smooth endoplasmic reticulum. In oocytes of primordial and primary follicles, lipid droplets were abundant and were mostly located at the cell poles. In secondary and antral follicles, the zona pellucida completely surrounded the oocyte, whereas some microvilli and granulosa cells projected through it. Numerous electron-lucent vesicles and vacuoles were present in the oolemma of secondary and antral follicles. Based on osmium-imidazole staining, most of these structures were shown to be lipid droplets. As the follicle developed, the appearance of the lipid droplets changed from small and black to large and gray, dark or dark with light streaks, suggesting that their nature may change over time. In summary, although porcine follicles and oocytes had many similarities to those of other mammalian species, they were rich in lipids, with lipid droplets with varying morphological patterns as the follicle developed.


Journal of Nanomaterials | 2014

Experimental investigation of the coprecipitation method: an approach to obtain magnetite and maghemite nanoparticles with improved properties

Wilson Sacchi Peternele; Victoria Monge Fuentes; Maria Luiza Fascineli; Jaqueline Rodrigues da Silva; Renata Carvalho Silva; Carolina Madeira Lucci; Ricardo Bentes Azevedo

Iron oxides that exhibit magnetic properties have been widely studied not only from an academic standpoint, but also for numerous applications in different fields of knowledge, such as biomedical and technological research. In this work, magnetite and maghemite nanoparticles were synthesized by chemical coprecipitation of FeCl2ċ4H2O and FeCl3ċ6H2O (proportion of 1 : 2) in three different cases using two bases (sodium hydroxide and hydroxide ammonium) as precipitants. The chemical coprecipitation method was selected for its simplicity, convenience, reproducibility, and low cost in the use of glassware. The nanostructured materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetometry (VSM). The objective of this work is to study the variation in the morphological characteristics and physical properties of nanoparticles magnetic as a function of the different production processes. As observed by TEM, the materials obtained from the precipitating agent NH4OH are more uniform than those obtained with NaOH. From XRD pattern analysis, it appears that the obtained materials correspond to magnetite and maghemite and, from magnetometry VSM analysis, show high magnetization as a function of the magnetic field at room temperature, indicating that these materials are superparamagnetic.


Cryobiology | 2013

Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos☆

Luciana Dalcin; Renata Carvalho Silva; Fernanda Paulini; B. D. M. Silva; Jairo Pereira Neves; Carolina Madeira Lucci

Even though sheep embryo cryopreservation is a commonly used procedure the survival and pregnancy outcomes can vary greatly. This study investigated whether cryopreservation was causing subtle changes in ultrastructure, mitochondrial activity or cytoskeletal integrity. Sheep embryos were either slow cooled in 1.5 M EG (n = 22), or vitrified in 20% EG + 20% DMSO with 0.5 M sucrose in Open Pulled Straws (OPS) (n = 24). One hour after warming the cryopreserved embryos differed from control embryos in that they had no mitochondrial activity combined with cytoskeletal disorganization and large vesicles. Vitrified embryos also showed many points of cytoskeleton disruption. Ultrastructural alterations resulting from actin filaments disorganization were observed in both cryopreserved groups. This includes areas presenting no cytoplasmic organelles, Golgi complex located far from the nucleus and a decrease of specialized intercellular junctions. Additionally, large vesicles were observed in vitrified morulae and early blastocysts. The alterations after cryopreservation were proportional to embryo quality as assessed using the stereomicroscope. Even in the absence of mitochondrial activity, grade I and II cryopreserved embryos contained mitochondria with normal ultrastructure. Embryos classified as grade I or II in the stereomicroscope revealed mild ultrastructural alterations, meaning that this tool is efficient to evaluate embryos after cryopreservation.


International Journal of Nanomedicine | 2012

Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer.

Mariana Campos da Paz; Maria de Fátima Menezes Almeida Santos; Camila M. B. Santos; Sebastião William da Silva; Lincoln Bernardo de Souza; E.C.D. Lima; Renata Carvalho Silva; Carolina Madeira Lucci; P.C. Morais; Ricardo Bentes Azevedo; Z.G.M. Lacava

Nanosized maghemite particles were synthesized, precoated (with dimercaptosuccinic acid) and surface-functionalized with anticarcinoembryonic antigen (anti-CEA) and successfully used to target cell lines expressing the CEA, characteristic of colorectal cancer (CRC) cells. The as-developed nanosized material device, consisting of surface decorated maghemite nanoparticles suspended as a biocompatible magnetic fluid (MF) sample, labeled MF-anti-CEA, was characterized and tested against two cell lines: a high-CEA expressing cell line (LS174T) and a low-CEA expressing cell line (HCT116). Whereas X-ray diffraction was used to assess the average core size of the as-synthesized maghemite particles (average 8.3 nm in diameter), dynamic light scattering and electrophoretic mobility measurements were used to obtain the average hydrodynamic diameter (550 nm) and the zeta-potential (−38 mV) of the as-prepared and maghemite-based nanosized device, respectively. Additionally, surface-enhanced Raman spectroscopy (SERS) was used to track the surface decoration of the nanosized maghemite particles from the very first precoating up to the attachment of the anti-CEA moiety. The Raman peak at 1655 cm−1, absent in the free anti-CEA spectrum, is the signature of the anti-CEA binding onto the precoated magnetic nanoparticles. Whereas MTT assay was used to confirm the low cell toxicity of the MF-anti-CEA device, ELISA and Prussian blue iron staining tests performed with both cell lines (LS174T and HCT116) confirm that the as-prepared MF-anti- CEA is highly specific for CEA-expressing cells. Finally, transmission electron microscopy analyses show that the association with anti-CEA seems to increase the number of LS174T cells with internalized maghemite nanoparticles, whereas no such increase seems to occur in the HCT116 cell line. In conclusion, the MF-anti-CEA sample is a biocompatible device that can specifically target CEA, suggesting its potential use as a theragnostic tool for CEA-expressing tumors, micrometastasis, and cancer-circulating cells.


Journal of Nanobiotechnology | 2016

Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications

Luisa H. A. Silva; Jaqueline Rodrigues da Silva; Guilherme A. Ferreira; Renata Carvalho Silva; Emilia C. D. Lima; Ricardo Bentes Azevedo; Daniela M. Oliveira

BackgroundNanoparticles’ unique features have been highly explored in cellular therapies. However, nanoparticles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting.ResultsSignificant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra-structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells. γ-Fe2O3-DMSA labeled cells were magnetically responsive in vitro and after infused in vivo in an experimental model of lung silicosis.ConclusionIn terms of biocompatibility, the use of γ-Fe2O3-DMSA and Au-DMSA as tracers for mesenchymal stem cells was assured. However, Au-DMSA shown to be not suitable for visualization and tracking of these cells in vivo by standard computed microtomography. Otherwise, γ-Fe2O3-DMSA shows to be a promising agent for mesenchymal stem cells magnetic targeting.


Journal of Ovarian Research | 2014

Ultrastructural changes in oocytes during folliculogenesis in domestic mammals

Fernanda Paulini; Renata Carvalho Silva; José Luiz Jivago de Paula Rôlo; Carolina Madeira Lucci

The ultrastructural analysis of oocytes and ovarian follicles has been used to evaluate the effects of assisted reproductive techniques, such as cryopreservation or in vitro oocyte maturation. It also benefits the understanding of such complex mechanisms that occur during folliculogenesis. From the beginning of primordial follicles growth until oocyte maturation in preovulatory follicles oocyte cytoplasmic organelles undergo dynamic alterations that reflect physiological changes and development. This review aims to make a retrospective survey of the relevant features of follicles and oocytes ultrastructure, highlighting the differences between mammalian species, specially the domestic ones.


Journal of Nanomedicine & Nanotechnology | 2015

Photodynamic Therapy Based on Arrabidaea chica (Crajiru) ExtractNanoemulsion: In vitro Activity against Monolayers and Spheroids ofHuman Mammary Adenocarcinoma MCF-7 Cells

Mosar Corrêa Rodrigues; Luis Alexandre Muehlmann; João Pf Longo; Renata Carvalho Silva; Ilmar B Graebner; Igor A Degterev; Carolina Madeira Lucci; Ricardo Bentes Azevedo; Mônica Pereira Garcia

Natural products have been sources of numerous drugs over the history. However, little is known about the therapeutic potential of Amazon forest species. This work aimed at testing the potential of the hydrophobic extract of Arrabidaea chica (ACE), an Amazon plant, as a source of photosensitizers for anticancer photodynamic therapy. ACE was tested as a nanoemulsion (ACE-NE) produced by phase inversion temperature. It was found that ACE-NE intensely absorbs red light and, under photoactivation (λ 660 nm, 4.5 J/cm2), produces reactive oxygen species. Photoactivated ACE-NE presented, in vitro, a CC50 of 1.3 μg ACE/mL against human breast adenocarcinoma MCF-7 cells, and was effective in lysing MCF-7 spheroids. In the dark, ACE was toxic neither to human mammary epithelial MCF-10A cells nor to MCF-7 cells. On that ground, this work is the first to show that A. chica is a source of photosensitizers potentially useful for anticancer photodynamic therapy.


Nutricion Hospitalaria | 2013

CYTOTOXICITY OF AGARICUS SYLVATICUS IN NON-TUMOR CELLS (NIH/3T3) AND TUMOR (OSCC-3) USING TETRAZOLIUM (MTT) ASSAY

Joice Vinhal Costa Orsine; Luíssa Marques Brito; Renata Carvalho Silva; Maria de Fátima Menezes Santos Almeida; Maria Rita Carvalho Garbi Novaes

The purpose of this study was to assess the cytotoxic effect of the non-fractionated aqueous extract of A. sylvaticus mushroom in cultures of non-tumor cells (NIH3T3) and tumor cells (OSCC-3). The cells were maintained in DMEN cell culture medium added of 10% of fetal bovine serum and 1% antibiotic. For the cytotoxicity test we prepared the aqueous mushroom extract at concentrations of 0.01 mg.ml⁻¹, 0.02 mg.ml⁻¹, 0.04 mg.ml⁻¹, 0.08 mg.ml⁻¹, 0.16 mg.ml⁻¹, and 0.32 mg.ml⁻¹. For the culture, 2 x 10⁵ cells/ml was deposited in 96-well microplates during 24 hour incubation with subsequent exchange of medium by another containing the mushroom concentrations. After 24 hour incubation the medium was discarded and 100 ml of tetrazolium blue (MTT) was added at a concentration of 5 mg.ml⁻¹. The microplates were incubated for 2 h at 37° C. Spectrophotometric analysis was performed using 570 nm wavelength. From the values of the optical densities we determined the drug concentration capable of reducing cell viability by 50%. Therefore, the mushroom A. sylvaticus, at all concentrations tested, did not show cytotoxic effects, once the inhibitory concentration (IC₅₀) obtained for tumor cells OSCC-3 was 0.06194 mg.ml⁻¹, and the IC₅₀ checked for non-tumor cells NIH3T3 was 0,06468 mg.ml⁻¹. This test made it possible to determine that A. sylvaticus mushroom has no cytotoxic effects, suggesting its use safe for human consumption.

Collaboration


Dive into the Renata Carvalho Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.C. Campello

State University of Ceará

View shared research outputs
Top Co-Authors

Avatar

D.M. Magalhães

State University of Ceará

View shared research outputs
Top Co-Authors

Avatar

E.C.D. Lima

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Emilia C. D. Lima

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

J.R. Figueiredo

State University of Ceará

View shared research outputs
Researchain Logo
Decentralizing Knowledge