Renata F. Leoni
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renata F. Leoni.
NeuroImage | 2011
Renata F. Leoni; Fernando F. Paiva; Erica C. Henning; George C. Nascimento; Alberto Tannús; Draulio B. de Araujo; Afonso C. Silva
Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBF), cerebrovascular resistance and CO(2) reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, α-chloralose and 2% isoflurane (1.5 MAC). Repeated CBF measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under α-chloralose, whole brain CBF at normocapnia did not differ between groups (young WKY: 61 ± 3ml/100g/min; adult WKY: 62 ± 4ml/100g/min; young SHR: 70 ± 9ml/100g/min; adult SHR: 69 ± 8ml/100g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBF values increased significantly, and a linear relationship between CBF and PaCO(2) levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBF in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139 ± 25ml/100g/min; adult SHR: 104 ± 23ml/100g/min; young WKY: 55± 9ml/100g/min; adult WKY: 71 ± 19ml/100g/min). CBF values increased significantly with increasing CO(2); however, there was a clear saturation of CBF at PaCO(2) levels greater than 70mmHg in both young and adult rats, regardless of absolute CBF values, suggesting that isoflurane interferes with the vasodilatory mechanisms of CO(2). This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO(2) reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance.
Methods of Molecular Biology | 2011
Afonso C. Silva; Junjie V. Liu; Yoshiyuki Hirano; Renata F. Leoni; Hellmut Merkle; Julie B. Mackel; Xian Feng Zhang; George C. Nascimento; Bojana Stefanovic
Functional magnetic resonance imaging (fMRI) has had an essential role in furthering our understanding of brain physiology and function. fMRI techniques are nowadays widely applied in neuroscience research, as well as in translational and clinical studies. The use of animal models in fMRI studies has been fundamental in helping elucidate the mechanisms of cerebral blood-flow regulation, and in the exploration of basic neuroscience questions, such as the mechanisms of perception, behavior, and cognition. Because animals are inherently non-compliant, most fMRI performed to date have required the use of anesthesia, which interferes with brain function and compromises interpretability and applicability of results to our understanding of human brain function. An alternative approach that eliminates the need for anesthesia involves training the animal to tolerate physical restraint during the data acquisition. In the present chapter, we review these two different approaches to obtaining fMRI data from animal models, with a specific focus on the acquisition of longitudinal data from the same subjects.
Stroke | 2010
Kelley C. Mazzetto-Betti; Renata F. Leoni; Octávio Marques Pontes-Neto; Antonio C. Santos; João Pereira Leite; Afonso C. Silva; Draulio B. de Araujo
Background and Purpose— Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. Methods— Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary and supplementary motor areas of both hemispheres. Statistical maps were obtained by the conventional General Linear Model and by a parametric General Linear Model. Results— Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both primary and supplementary motor areas was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional General Linear Model analysis failed to detect brain activation during movement of the paretic hand. However, the proposed parametric General Linear Model corrected the misdetection problem and showed robust activation in both primary and supplementary motor areas. Conclusions— The use of data analysis tools that are built on the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in patients with stroke. The present data urge the use of caution when relying on the BOLD response as a marker of brain reorganization in patients with stroke.
NeuroImage | 2008
Renata F. Leoni; K. C. Mazzeto-Betti; K. C. Andrade; Draulio B. de Araujo
The brain vascular system has an autoregulatory mechanism that maintains blood perfusion within normal limits at the capillary level. Partially due to its clinical importance, it is of interest to better understand the mechanisms involved in vascular regulation. Therefore, using functional magnetic resonance imaging (fMRI), we quantitatively investigated hemodynamic response characteristics of regions supplied by the main cerebral arteries, during two breath holding tests (BHT): after inspiration and after expiration. We used an auto-regressive method capable of estimating four signal parameters: onset delay, full width at half maximum (FWHM), time-to-peak and amplitude. The onset delay was significantly longer for the posterior cerebral artery (PCA) than for middle cerebral artery (MCA) and anterior arteries (ACA). FWHM and time-to-peak were larger in the ACA territory, indicating a slower blood flow in this region. Differences were also observed in the amplitude among the three areas, where MCA and PCA territories showed the smallest and the highest amplitudes, respectively. Moreover, differences were found in amplitude and onset when BHT was performed after inspiration as compared to BHT after expiration. Time-to-peak and FWHM showed no statistical differences between these two challenges. Such results are related to regional anatomical specificities and biochemical mechanisms responsible for vasodilation, such as those related to vascularity and vessel sizes.
Radiology Research and Practice | 2012
Renata F. Leoni; Kelley C. Mazzetto-Betti; Afonso C. Silva; Antonio C. Santos; Draulio B. de Araujo; João Pereira Leite; Octávio Marques Pontes-Neto
Impaired cerebrovascular reactivity (CVR), a predictive factor of imminent stroke, has been shown to be associated with carotid steno-occlusive disease. Magnetic resonance imaging (MRI) techniques, such as blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL), have emerged as promising noninvasive tools to evaluate altered CVR with whole-brain coverage, when combined with a vasoactive stimulus, such as respiratory task or injection of acetazolamide. Under normal cerebrovascular conditions, CVR has been shown to be globally and homogenously distributed between hemispheres, but with differences among cerebral regions. Such differences can be explained by anatomical specificities and different biochemical mechanisms responsible for vascular regulation. In patients with carotid steno-occlusive disease, studies have shown that MRI techniques can detect impaired CVR in brain tissue supplied by the affected artery. Moreover, resulting CVR estimations have been well correlated to those obtained with more established techniques, indicating that BOLD and ASL are robust and reliable methods to assess CVR in patients with cerebrovascular diseases. Therefore, the present paper aims to review recent studies which use BOLD and ASL to evaluate CVR, in healthy individuals and in patients with carotid steno-occlusive disease, providing a source of information regarding the obtained results and the methodological difficulties.
Neuroscience | 2014
Byeong-Teck Kang; Renata F. Leoni; Afonso C. Silva
The correlation between temporal changes of regional cerebral blood flow (rCBF) and the severity of transient ischemic stroke in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) was investigated using T2-, diffusion- and perfusion-weighted magnetic resonance imaging at six different time points: before and during 1h of unilateral middle cerebral artery occlusion (MCAO), 1h after reperfusion, and 1 day, 4 days and 7 days after MCAO. rCBF values were measured in both hemispheres, and the perfusion-deficient lesion (PDL) was defined as the area of the brain with a 57% or more reduction in basal CBF. Within the PDL, regions were further refined as ischemic core (rCBF=0-6 mL/100 g/min), ischemic penumbra (rCBF=6-15 mL/100 g/min) and benign oligemia (rCBF>15 mL/100 g/min). SHR and WKY had identical initial volume of the PDLs (WKY: 32.52 ± 4.08% vs. SHR: 33.95 ± 3.68%; P>0.05) and the maximum rCBF measured within those lesions (WKY: 38.20 ± 3.57 mL/100g/min vs. SHR: 38.46 ± 6.22 mL/100 g/min; P>0.05) during MCAO. However, in SHR virtually all of the PDL progressed to become the final ischemic lesion (33.02 ± 5.41%, P>0.05), while the final ischemic lesion volume of WKY (12.62 ± 9.19%) was significantly smaller than their original PDL (P<0.01) and similar to the ischemic core (13.13 ± 2.96%, P>0.05). The region with the lowest range of rCBF was positively correlated with the final ischemic lesion volume (r=0.716, P<0.01). Both during ischemia and after reperfusion, rCBF in either ipsilesional and contralesional brain hemispheres of SHR could not be restored to pre-ischemic levels, and remained lower than in WKY until up to 4 days after MCAO. The data suggest that impaired CBF regulation and relatively high CBF threshold for ischemia are strong contributors to the increased susceptibility of SHR to ischemic stroke.
Magnetic Resonance in Medicine | 2010
Hanbing Lu; Renata F. Leoni; Afonso C. Silva; Elliot A. Stein; Yihong Yang
In quantitative perfusion imaging using arterial spin labeling, variable blood transit times and postlabeling delays are two confounding factors that may compromise the accuracy of perfusion quantifications. In this study, theoretical analyses and experimental data at 9.4 T demonstrate that increasing labeling duration not only enhances the contrast of the arterial spin labeling signal but also minimizes the effect of variable postlabeling delays in multislice arterial spin labeling acquisitions. With a labeling duration of 6.4 sec, arterial spin labeling signal acquired in multislice mode (11 slices) is very similar to that acquired in single‐slice mode. Previous studies have shown that inserting a delay between the spin labeling pulse and the image acquisition pulse could reduce confounds resulting from variable blood transit times at the expense of arterial spin labeling sensitivity. Our simulations suggest that enhancing the contrast of arterial spin labeling signal offers the opportunity for extending the postlabeling delay to a longer duration, minimizing systematic errors associated with a wide range of blood transit times, which could have significant implications for applying arterial spin labeling techniques to perfusion imaging of pathological conditions in animal models. Magn Reson Med, 2010.
Brain Research | 2012
Byeong-Teck Kang; Renata F. Leoni; Dong-Eog Kim; Afonso C. Silva
Arterial hypertension is a major risk factor for ischemic stroke. However, the management of preexisting hypertension is still controversial in the treatment of acute stroke in hypertensive patients. The present study evaluates the influence of preserving hypertension during focal cerebral ischemia on stroke outcome in a rat model of chronic hypertension, the spontaneously hypertensive rats (SHR). Focal cerebral ischemia was induced by transient (1h) occlusion of the middle cerebral artery, during which mean arterial blood pressure was maintained at normotension (110-120mm Hg, group 1, n=6) or hypertension (160-170mm Hg, group 2, n=6) using phenylephrine. T2-, diffusion- and perfusion-weighted MRI were performed serially at five different time points: before and during ischemia, and at 1, 4 and 7 days after ischemia. Lesion volume and brain edema were estimated from apparent diffusion coefficient maps and T2-weighted images. Regional cerebral blood flow (rCBF) was measured within and outside the perfusion deficient lesion and in the corresponding regions of the contralesional hemisphere. Neurological deficits were evaluated after reperfusion. Infarct volume, edema, and neurological deficits were significantly reduced in group 2 vs. group 1. In addition, higher values and rapid restoration of rCBF were observed in group 2, while rCBF in both hemispheres was significantly decreased in group 1. Maintaining preexisting hypertension alleviates ischemic brain injury in SHR by increasing collateral circulation to the ischemic region and allowing rapid restoration of rCBF. The data suggest that maintaining preexisting hypertension is a valuable approach to managing hypertensive patients suffering from acute ischemic stroke.
Translational Stroke Research | 2012
Renata F. Leoni; Fernando F. Paiva; Byeong-Teck Kang; Erica C. Henning; George C. Nascimento; Alberto Tannús; Draulio B. de Araujo; Afonso C. Silva
Collateral circulation, defined as the supplementary vascular network that maintains cerebral blood flow (CBF) when the main vessels fail, constitutes one important defense mechanism of the brain against ischemic stroke. In the present study, continuous arterial spin labeling (CASL) was used to quantify CBF and obtain perfusion territory maps of the major cerebral arteries in spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) controls. Results show that both WKY and SHR have complementary, yet significantly asymmetric perfusion territories. Right or left dominances were observed in territories of the anterior (ACA), middle and posterior cerebral arteries, and the thalamic artery. Magnetic resonance angiography showed that some of the asymmetries were correlated with variations of the ACA. The leptomeningeal circulation perfusing the outer layers of the cortex was observed as well. Significant and permanent changes in perfusion territories were obtained after temporary occlusion of the right middle cerebral artery in both SHR and WKY, regardless of their particular dominance. However, animals with right dominance presented a larger volume change of the left perfusion territory (23 ± 9%) than animals with left dominance (7 ± 5%, P < 0.002). The data suggest that animals with contralesional dominance primarily safeguard local CBF values with small changes in contralesional perfusion territory, while animals with ipsilesional dominance show a reversal of dominance and a substantial increase in contralesional perfusion territory. These findings show the usefulness of CASL to probe the collateral circulation.
Psychiatry Research-neuroimaging | 2018
Ícaro Agenor Ferreira de Oliveira; Tiago M. Guimarães; Roberto M. Souza; Antonio C. Santos; João Paulo Machado-de-Sousa; Jaime E. C. Hallak; Renata F. Leoni
Schizophrenia is a severe mental disorder that affects the anatomy and function of the brain, with an impact on ones thoughts, feelings, and behavior. The purpose of the study was to investigate cerebral blood flow (CBF) and brain connectivity in a group of patients with schizophrenia. Pseudo-continuous arterial spin labeling (pCASL) images were acquired from 28 patients in treatment and 28 age-matched healthy controls. Mean CBF and connectivity patterns were assessed. Schizophrenia patients had decreased CBF in the bilateral frontal pole and superior frontal gyrus, right medial frontal gyrus, triangular and opercular parts of the inferior frontal gyrus, posterior division of the left supramarginal gyrus, superior and inferior divisions of the left lateral occipital cortex, and bilateral occipital pole. Moreover, through different methods to assess connectivity, our results showed abnormal connectivity patterns in regions involved in motor, sensorial, and cognitive functions. Using pCASL, a non-invasive technique, we found CBF deficits and altered functional organization of the brain in schizophrenia patients that are associated with the symptoms and characteristics of the disorder.