Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Frazão is active.

Publication


Featured researches published by Renata Frazão.


Journal of Clinical Investigation | 2011

Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons

Jose Donato; Roberta M. Cravo; Renata Frazão; Laurent Gautron; Michael M. Scott; Jennifer Lachey; Inar Alves de Castro; Lisandra O. Margatho; Syann Lee; Charlotte E. Lee; James A. Richardson; Jeffrey M. Friedman; Streamson C. Chua; Roberto Coppari; Jeffrey M. Zigman; Joel K. Elmquist; Carol F. Elias

Studies in humans and rodents indicate that a minimum amount of stored energy is required for normal pubertal development. The adipocyte-derived hormone leptin is a key metabolic signal to the neuroendocrine reproductive axis. Humans and mice lacking leptin or the leptin receptor (LepR) (ob/ob and db/db mice, respectively) are infertile and fail to enter puberty. Leptin administration to leptin-deficient subjects and ob/ob mice induces puberty and restores fertility, but the exact site or sites of leptin action are unclear. Here, we found that genetic deletion of LepR selectively from hypothalamic Kiss1 neurons in mice had no effect on puberty or fertility, indicating that direct leptin signaling in Kiss1 neurons is not required for these processes. However, bilateral lesions of the ventral premammillary nucleus (PMV) of ob/ob mice blunted the ability of exogenous leptin to induce sexual maturation. Moreover, unilateral reexpression of endogenous LepR in PMV neurons was sufficient to induce puberty and improve fertility in female LepR-null mice. This LepR reexpression also normalized the increased hypothalamic GnRH content characteristic of leptin-signaling deficiency. These data suggest that the PMV is a key site for leptins permissive action at the onset of puberty and support the hypothesis that the multiple actions of leptin to control metabolism and reproduction are anatomically dissociated.


Neuroscience | 2011

Characterization of Kiss1 neurons using transgenic mouse models

Roberta M. Cravo; Lisandra O. Margatho; Sherri Osborne-Lawrence; Jose Donato; Stan Atkin; Angie L. Bookout; Sherry A. Rovinsky; Renata Frazão; Charlotte E. Lee; Laurent Gautron; Jeffrey M. Zigman; Carol F. Elias

Humans and mice with loss-of-function mutations of the genes encoding kisspeptins (Kiss1) or kisspeptin receptor (Kiss1r) are infertile due to hypogonadotropic hypogonadism. Within the hypothalamus, Kiss1 mRNA is expressed in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (Arc). In order to better study the different populations of kisspeptin cells we generated Kiss1-Cre transgenic mice. We obtained one line with Cre activity specifically within Kiss1 neurons (line J2-4), as assessed by generating mice with Cre-dependent expression of green fluorescent protein or β-galactosidase. Also, we demonstrated Kiss1 expression in the cerebral cortex and confirmed previous data showing Kiss1 mRNA in the medial nucleus of amygdala and anterodorsal preoptic nucleus. Kiss1 neurons were more concentrated towards the caudal levels of the Arc and higher leptin-responsivity was observed in the most caudal population of Arc Kiss1 neurons. No evidence for direct action of leptin in AVPV Kiss1 neurons was observed. Melanocortin fibers innervated subsets of Kiss1 neurons of the preoptic area and Arc, and both populations expressed melanocortin receptors type 4 (MC4R). Specifically in the preoptic area, 18-28% of Kiss1 neurons expressed MC4R. In the Arc, 90% of Kiss1 neurons were glutamatergic, 50% of which also were GABAergic. In the AVPV, 20% of Kiss1 neurons were glutamatergic whereas 75% were GABAergic. The differences observed between the Kiss1 neurons in the preoptic area and the Arc likely represent neuronal evidence for their differential roles in metabolism and reproduction.


Cell Metabolism | 2011

SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance

Giorgio Ramadori; Teppei Fujikawa; Jason G. Anderson; Eric D. Berglund; Renata Frazão; Shaday Michan; Claudia R. Vianna; David A. Sinclair; Carol F. Elias; Roberto Coppari

Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.


Neuroendocrinology | 2011

Hypothalamic sites of leptin action linking metabolism and reproduction.

Jose Donato; Roberta M. Cravo; Renata Frazão; Carol F. Elias

A critical amount of energy reserve is necessary for puberty initiation, for normal sexual maturation and maintenance of cyclicity and fertility in females of most species. Therefore, the existence of circulating metabolic cues which directly modulate the hypothalamus-pituitary-gonad axis is predictable. The adipocyte-derived hormone leptin is one of these cues having been studied extensively in the context of regulating the reproductive physiology. Humans and mice lacking leptin (ob/ob) or leptin receptor (LepR, db/db) are infertile. Leptin administration to leptin-deficient subjects and ob/ob mice induces puberty and restores fertility. LepR is expressed in brain, pituitary gland and gonads, but studies using genetically engineered mouse models determined that the brain plays a major role. Recently, it has been made clear that leptin acts indirectly on gonadotropin-releasing hormone (GnRH)-secreting cells via actions on interneurons. However, the exact site(s) of leptin action has been difficult to determine. In this review, we discuss the recent advances in the field focused on the identification of potential site(s) or specific neuronal populations involved in leptin’s effects in the neuroendocrine reproductive axis.


PLOS ONE | 2013

Leptin signaling in Kiss1 neurons arises after pubertal development.

Roberta M. Cravo; Renata Frazão; Mario Perello; Sherri Osborne-Lawrence; Kevin W. Williams; Jeffery M. Zigman; Claudia R. Vianna; Carol F. Elias

The adipocyte-derived hormone leptin is required for normal pubertal maturation in mice and humans and, therefore, leptin has been recognized as a crucial metabolic cue linking energy stores and the onset of puberty. Several lines of evidence have suggested that leptin acts via kisspeptin expressing neurons of the arcuate nucleus to exert its effects. Using conditional knockout mice, we have previously demonstrated that deletion of leptin receptors (LepR) from kisspeptin cells cause no puberty or fertility deficits. However, developmental adaptations and system redundancies may have obscured the physiologic relevance of direct leptin signaling in kisspeptin neurons. To overcome these putative effects, we re-expressed endogenous LepR selectively in kisspeptin cells of mice otherwise null for LepR, using the Cre-loxP system. Kiss1-Cre LepR null mice showed no pubertal development and no improvement of the metabolic phenotype, remaining obese, diabetic and infertile. These mice displayed decreased numbers of neurons expressing Kiss1 gene, similar to prepubertal control mice, and an unexpected lack of re-expression of functional LepR. To further assess the temporal coexpression of Kiss1 and Lepr genes, we generated mice with the human renilla green fluorescent protein (hrGFP) driven by Kiss1 regulatory elements and crossed them with mice that express Cre recombinase from the Lepr locus and the R26-tdTomato reporter gene. No coexpression of Kiss1 and LepR was observed in prepubertal mice. Our findings unequivocally demonstrate that kisspeptin neurons are not the direct target of leptin in the onset of puberty. Leptin signaling in kisspeptin neurons arises only after completion of sexual maturation.


Embo Molecular Medicine | 2015

Alzheimer‐associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation

Julia R. Clarke; Natalia M. Lyra e Silva; Cláudia P. Figueiredo; Rudimar Luiz Frozza; José Henrique Ledo; Danielle Beckman; Carlos K. Katashima; Daniela S. Razolli; Bruno M. Carvalho; Renata Frazão; Marina Silveira; Felipe C. Ribeiro; Theresa R. Bomfim; Fernanda S. Neves; William L. Klein; Rodrigo Medeiros; Frank M. LaFerla; José B.C. Carvalheira; Mario J.A. Saad; Douglas P. Munoz; Lício A. Velloso; Sergio T. Ferreira; Fernanda G. De Felice

Alzheimers disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD‐associated Aβ oligomers (AβOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AβOs failed to induce glucose intolerance, suggesting AβOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AβOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α‐P). AβOs further induced eIF2α‐P and activated pro‐inflammatory IKKβ/NF‐κB signaling in the hypothalamus of mice and macaques. AβOs failed to trigger peripheral glucose intolerance in tumor necrosis factor‐α (TNF‐α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AβOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AβOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD.


The Journal of Neuroscience | 2013

Shift in Kiss1 Cell Activity Requires Estrogen Receptor α

Renata Frazão; Roberta M. Cravo; Jose Donato; Dhirender V. Ratra; Deborah J. Clegg; Joel K. Elmquist; Jeffrey M. Zigman; Kevin W. Williams; Carol F. Elias

Reproductive function requires timely secretion of gonadotropin-releasing hormone, which is controlled by a complex excitatory/inhibitory network influenced by sex steroids. Kiss1 neurons are fundamental players in this network, but it is currently unclear whether different conditions of circulating sex steroids directly alter Kiss1 neuronal activity. Here, we show that Kiss1 neurons in the anteroventral periventricular and anterior periventricular nuclei (AVPV/PeN) of males and females exhibit a bimodal resting membrane potential (RMP) influenced by KATP channels, suggesting the presence of two neuronal populations defined as type I (irregular firing patterns) and type II (quiescent). Kiss1 neurons in the arcuate nucleus (Arc) are also composed of firing and quiescent cells, but unlike AVPV/PeN neurons, the range of RMPs did not follow a bimodal distribution. Moreover, Kiss1 neuronal activity in the AVPV/PeN, but not in the Arc, is sexually dimorphic. In females, estradiol shifts the firing pattern of AVPV/PeN Kiss1 neurons and alters cell capacitance and spontaneous IPSCs amplitude of AVPV/PeN and Arc Kiss1 populations in an opposite manner. Notably, mice with selective deletion of estrogen receptor α (ERα) from Kiss1 neurons show cellular activity similar to that observed in ovariectomized females, suggesting that estradiol-induced changes in Kiss1 cellular properties require ERα. We also show that female prepubertal Kiss1 neurons are under higher inhibitory influence and all recorded AVPV/PeN Kiss1 neurons were spontaneously active. Collectively, our findings indicate that changes in cellular activity may underlie Kiss1 action in pubertal initiation and female reproduction.


Endocrinology | 2010

Leptin Induces Phosphorylation of Neuronal Nitric Oxide Synthase in Defined Hypothalamic Neurons

Jose Donato; Renata Frazão; Makoto Fukuda; Claudia R. Vianna; Carol F. Elias

Studies have indicated that the neurotransmitter nitric oxide (NO) mediates leptins effects in the neuroendocrine reproductive axis. However, the neurons involved in these effects and their regulation by leptin is still unknown. We aimed to determine whether NO neurons are direct targets of leptin and by which mechanisms leptin may influence neuronal NO synthase (nNOS) activity. Nicotinamide adenine dinucleotide phosphate diaphorase activity and leptin-induced phosphorylation of signal transducer and activator of transcription-3 immunoreactivity were coexpressed in subsets of neurons of the medial preoptic area, the paraventricular nucleus of the thalamus, the arcuate nucleus (Arc), the dorsomedial nucleus of the hypothalamus (DMH), the posterior hypothalamic area, the ventral premammillary nucleus (PMV), the parabrachial nucleus, and the dorsal motor nucleus of the vagus nerve. Fasting blunted nNOS mRNA expression in the medial preoptic area, Arc, DMH, PMV, and posterior hypothalamic area, and this effect was not restored by acute leptin administration. No difference in the number of neurons expressing nNOS immunoreactivity was noticed comparing hypothalamic sections of fed (wild type and ob/ob), fasted, and fasted leptin-treated mice. However, we found that in states of low leptin levels, as in fasting, or lack of leptin, as in ob/ob mice, the number of neurons expressing the phosphorylated form of nNOS is decreased in the Arc, DMH, and PMV. Notably, acute leptin administration to fasted wild-type mice restored the number of phosphorylated form of nNOS neurons to that observed in fed wild-type mice. Herein we identified the first-order neurons potentially involved in NO-mediated effects of leptin and demonstrate that leptin regulates nNOS activity predominantly through posttranslational mechanisms.


American Journal of Physiology-endocrinology and Metabolism | 2014

Estradiol modulates Kiss1 Neuronal Response to Ghrelin

Renata Frazão; Heather M. Dungan Lemko; Regina P. da Silva; Dhirender V. Ratra; Charlotte E. Lee; Kevin W. Williams; Jeffrey M. Zigman; Carol F. Elias

Ghrelin is a metabolic signal regulating energy homeostasis. Circulating ghrelin levels rise during starvation and fall after a meal, and therefore, ghrelin may function as a signal of negative energy balance. Ghrelin may also act as a modulator of reproductive physiology, as acute ghrelin administration suppresses gonadotropin secretion and inhibits the neuroendocrine reproductive axis. Interestingly, ghrelins effect in female metabolism varies according to the estrogen milieu predicting an interaction between ghrelin and estrogens, likely at the hypothalamic level. Here, we show that ghrelin receptor (GHSR) and estrogen receptor-α (ERα) are coexpressed in several hypothalamic sites. Higher levels of circulating estradiol increased the expression of GHSR mRNA and the coexpression of GHSR mRNA and ERα selectively in the arcuate nucleus (ARC). Subsets of preoptic and ARC Kiss1 neurons coexpressed GHSR. Increased colocalization was observed in ARC Kiss1 neurons of ovariectomized estradiol-treated (OVX + E₂; 80%) compared with ovariectomized oil-treated (OVX; 25%) mice. Acute actions of ghrelin on ARC Kiss1 neurons were also modulated by estradiol; 75 and 22% of Kiss1 neurons of OVX + E₂ and OVX mice, respectively, depolarized in response to ghrelin. Our findings indicate that ghrelin and estradiol may interact in several hypothalamic sites. In the ARC, high levels of E₂ increase GHSR mRNA expression, modifying the colocalization rate with ERα and Kiss1 and the proportion of Kiss1 neurons acutely responding to ghrelin. Our findings indicate that E₂ alters the responsiveness of kisspeptin neurons to metabolic signals, potentially acting as a critical player in the metabolic control of the reproductive physiology.


Arquivos Brasileiros De Endocrinologia E Metabologia | 2010

The PI3K signaling pathway mediates the biological effects of leptin

Jose Donato; Renata Frazão; Carol F. Elias

The activation of the leptin receptor recruits several intracellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway. While some of the leptin-induced signaling pathways, such as the JAK2/STAT3 pathway, induce cellular responses primarily through changes in gene expression, the PI3K pathway affects cellular properties more rapidly, through post-translational changes such as protein phosphorylation. Accordingly, several studies have shown that the PI3K pathway is required for the acute effects of leptin, such as a leptin-induced decrease in food intake. Leptin signaling through PI3K also affects the electrophysiological properties of neurons, including changes in their membrane potential and firing rates. In this review, we summarize the recent advances in our understanding of the role played by the PI3K signaling pathway in controlling food intake and energy balance. In particular, we focus on the importance of the PI3K signaling pathway as a mediator of the effects of leptin on hypothalamic neurons.

Collaboration


Dive into the Renata Frazão's collaboration.

Top Co-Authors

Avatar

Jose Donato

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciana Pinato

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta M. Cravo

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge