Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Gorjão is active.

Publication


Featured researches published by Renata Gorjão.


Lipids in Health and Disease | 2012

Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function

Amanda R. Martins; Renato Tadeu Nachbar; Renata Gorjão; Marco Aurélio Ramirez Vinolo; William T. Festuccia; Rafael Herling Lambertucci; Maria Fernanda Cury-Boaventura; Leonardo R. Silveira; Rui Curi; Sandro M. Hirabara

Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.


Pharmacology & Therapeutics | 2009

Comparative effects of DHA and EPA on cell function.

Renata Gorjão; Anna Karenina Azevedo-Martins; Hosana G. Rodrigues; Fernando Abdulkader; Manoel Arcisio-Miranda; Joaquim Procopio; Rui Curi

Fish oil supplementation has been reported to be generally beneficial in autoimmune, inflammatory and cardiovascular disorders. Most researchers have attributed these beneficial effects to the high content of omega-3 fatty acids in fish oil (FO). The effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are not differentiated in most studies. In fact, up to 1990, purified DHA was not available for human use and there was no study regarding its effects on human immune response. In this review, the differences in the effects of these two fatty acids on cell function are discussed. Studies have shown that EPA and DHA have also different effects on leukocyte functions such as phagocytosis, chemotactic response and cytokine production. DHA and EPA modulate differently expression of genes in lymphocytes. Activation of intracellular signaling pathways involved with lymphocyte proliferation is also differently affected by these two fatty acids. In relation to insulin producing cell line RINm5F, DHA and EPA are cytotoxic at different concentrations and the proteins involved with cell death are differently modulated by these two fatty acids. Substantial improvement in the therapeutic usage of omega-3 fatty acid-rich FO will be possible with the discovery of the different mechanisms of actions of DHA and EPA.


Neurobiology of Aging | 2005

Oxidative state in platelets and erythrocytes in aging and Alzheimer's disease

Elisa Mitiko Kawamoto; Carolina Demarchi Munhoz; Isaias Glezer; Valéria Santoro Bahia; Paulo Caramelli; Ricardo Nitrini; Renata Gorjão; Rui Curi; Cristoforo Scavone; Tania Marcourakis

Several studies have shown involvement of peroxynitrite anion, a potent oxidative agent, in Alzheimers disease (AD) neuropathology. Herein, we assessed in platelets and erythrocytes of AD patients, age-matched and young adults controls: thiobarbituric acid-reactive substances (TBARS) production; superoxide dismutase (SOD), nitric oxide synthase (NOS) and Na,K-ATPase activities; cyclic GMP (cGMP) content, both basal and after sodium nitroprusside (SNP) stimulation. Aging was associated with an increase in TBARS production and NOS activity, a decrease in basal cGMP content and no change in SOD and Na,K-ATPase activities. AD patients, compared to aged controls, have: increase in TBARS production and in NOS, SOD and Na,K-ATPase activities but no alteration in basal cGMP content. SNP increased cGMP platelets production in all groups. In conclusion, we demonstrated in platelets and erythrocytes a disruption in systemic modulation of oxidative stress in aging and with more intensity in AD.


Pediatric Research | 2007

Biomarkers of Oxidative Stress and Antioxidant Status in Children Born Small for Gestational Age: Evidence of Lipid Peroxidation

Maria do Carmo Pinho Franco; Elisa Mitiko Kawamoto; Renata Gorjão; Viviani Milan Ferreira Rastelli; Rui Curi; Cristoforo Scavone; Ana Lydia Sawaya; Zuleica B. Fortes; Ricardo Sesso

Children born small for gestational age are known to be at increased risk for adult diseases such as hypertension, diabetes, and coronary heart disease. Oxidative stress is a common feature of these pathogenic conditions and can be the key link between size at birth and increased morbidity later in life. The purpose of this study was to analyze the parameters of lipoperoxidation and changes in antioxidant defense system as well as assess their relationship to birth weight. Concentrations of thiobarbituric-acid-reactive-substances and F2-isoprostanes, total antioxidant status, and the activity of both superoxide dismutase and glutathione peroxidase were measured in 65 children (33 boys, 32 girls; ages 8–13 y). Thiobarbituric-acid-reactive-substances and F2-isoprostane levels were significantly elevated in children born small for gestational age. Nevertheless, superoxide dismutase activity was significantly elevated in these children and the levels of both glutathione peroxidase activity and total antioxidant status were unchanged. Moreover, we found that systolic blood pressure was positively associated with thiobarbituric-acid-reactive-substances levels in race- and gender-adjusted models but not in a multivariable regression model. In conclusion, the current study revealed that there is evidence of oxidative stress in children born small for gestational age as supported by increased lipid peroxidation.


BioMed Research International | 2012

Molecular Targets Related to Inflammation and Insulin Resistance and Potential Interventions

Sandro Massao Hirabara; Renata Gorjão; Marco Aurélio Ramirez Vinolo; Alice Cristina Rodrigues; Renato Tadeu Nachbar; Rui Curi

Inflammation and insulin resistance are common in several chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, and cardiovascular diseases. Various studies show a relationship between these two factors, although the mechanisms involved are not completely understood yet. Here, we discuss the molecular basis of insulin resistance and inflammation and the molecular aspects on inflammatory pathways interfering in insulin action. Moreover, we explore interventions based on molecular targets for preventing or treating correlated disorders, advances for a better characterization, and understanding of the mechanisms and mediators involved in the different inflammatory and insulin resistance conditions. Finally, we address biotechnological studies for the development of new potential therapies and interventions.


Clinical Science | 2007

Mechanisms by which fatty acids regulate leucocyte function.

Thais Martins de Lima; Renata Gorjão; Elaine Hatanaka; Maria Fernanda Cury-Boaventura; Erica Paula Portioli Silva; Joaquim Procopio; Rui Curi

Fatty acids (FAs) have been shown to alter leucocyte function and thus to modulate inflammatory and immune responses. In this review, the effects of FAs on several aspects of lymphocyte, neutrophil and macrophage function are discussed. The mechanisms by which FAs modulate the production of lipid mediators, activity of intracellular signalling pathways, activity of lipid-raft-associated proteins, binding to TLRs (Toll-like receptors), control of gene expression, activation of transcription factors, induction of cell death and production of reactive oxygen and nitrogen species are described in this review. The rationale for the use of specific FAs to treat patients with impaired immune function is explained. Substantial improvement in the therapeutic usage of FAs or FA derivatives may be possible based on an improvement in the understanding of the precise molecular mechanisms of action with respect to the different leucocyte types and outcome with respect to the inflammatory responses.


Journal of Parenteral and Enteral Nutrition | 2006

Toxicity of a Soybean Oil Emulsion on Human Lymphocytes and Neutrophils

Maria Fernanda Cury-Boaventura; Renata Gorjão; Thais Martins de Lima; Tatiane Maria Piva; Carmem Maldonado Peres; Francisco Garcia Soriano; Rui Curi

BACKGROUND The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. In this study, the toxicity of a lipid emulsion rich (60%) in triacylglycerol of omega-6 polyunsaturated fatty acids on leukocytes from healthy volunteers was investigated. METHODS Eleven volunteers were recruited, and blood samples were collected before infusion of a soybean oil emulsion, immediately afterwards, and 18 hours later. The cells were studied immediately after isolation and again after 24 hours or 48 hours in culture. The following determinations were made: composition and concentration of fatty acids in plasma, lymphocytes and neutrophils, lymphocyte proliferation, levels of cell viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, reactive oxygen species production, and neutral lipid accumulation. RESULTS Soybean oil emulsion decreased lymphocyte proliferation and provoked neutrophil and lymphocyte apoptosis and necrosis. Evidence is presented herein that soybean oil emulsion is less toxic to neutrophils than to lymphocytes. The mechanism of cell death induced by this oil emulsion was characterized by mitochondrial membrane depolarization and neutral lipid accumulation but did not alter reactive oxygen species production. CONCLUSIONS Soybean oil emulsion given as a single dose of 500 mL promotes lymphocyte and neutrophil death that may enhance the susceptibility of the patients to infections.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression.

Carla Rodrigues Bromati; Camilo Lellis-Santos; Tatiana S Yamanaka; Tatiane C.A. Nogueira; Mauro Leonelli; Luciana C. Caperuto; Renata Gorjão; Adriana R. Leite; Gabriel F. Anhê; Silvana Bordin

Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in β-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2α phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in β-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in β-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.


Lipids | 2004

Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells

Rozangela Verlengia; Renata Gorjão; Carla Cristine Kanunfre; Silvana Bordin; Thais Martins de Lima; Edgair F. Martins; Philip Newsholme; Rui Curi

The effects of EPA and DHA on the function and gene expression of a B-lymphocyte cell line (Raji) were investigated. Proliferation; production of interleukin-10 (IL-10), tumor necrosis factor (TNF)-α, and interferon (INF)-γ; and expression of pleiotropic genes were evaluated. Cell proliferation was increased in the presence of 12.5 μM EPA (approximately twofold) and 12.5 μM DHA (approximately 1.5-fold). EPA and DHA (25 μM) also decreased production of the key immunoregulatory cytokines IL-10, TNF-α, and INF-γ. EPA and DHA changed the expression of specific genes, but this effect was more marked for EPA (25.9% of genes investigated) compared with DHA (8.4% of genes investigated). EPA and DHA affected the expression of genes clustered as: cytokines, signal transduction, transcription, cell cycle, defense and repair, apoptosis, cell adhesion, cytoskeleton, and hormones. The most remarkable changes were observed in the genes of signal transduction and transcription. These results led us to conclude that the mechanism of DHA and EPA effects on B-lymphocyte functions includes regulation of gene expression. Thus, the ingestion of fish oil, a rich source of EPA and DHA, may have a strong effect on B-lymphocyte function in vivo. However, remarkable differences were observed between DHA and EPA, demonstrating that specific effects of these FA may be responsible for the marked differences in edible oil effects on immune function in vivo reported by others.


PLOS ONE | 2015

Benefits of regular exercise on inflammatory and cardiovascular risk markers in normal weight, overweight and obese adults

Olivia Santos Gondim; Vinicius Tadeu Nunes de Camargo; Fernanda Almeida Gutierrez; Patrícia Martins; Maria Elizabeth Pereira Passos; Cesar Miguel Momesso; Vinicius Coneglian Santos; Renata Gorjão; Tania Cristina Pithon-Curi; Maria Fernanda Cury-Boaventura

Obesity is a worldwide epidemic that increases the risk of several well-known co-morbidities. There is a complicated relationship between adipokines and low-grade inflammation in obesity and cardiovascular disease (CVD). Physical activity practices have beneficial health effects on obesity and related disorders such as hypertension and dyslipidemia. We investigated the effects of 6 and 12 months of moderate physical training on the levels of adipokines and CVD markers in normal weight, overweight and obese volunteers. The 143 participants were followed up at baseline and after six and twelfth months of moderate regular exercise, 2 times a week, for 12 months. The volunteers were distributed into 3 groups: Normal Weight Group (NWG,), Overweight Group (OVG) and Obese Group (OBG). We evaluated blood pressure, resting heart rate, anthropometric parameters, body composition, fitness capacity (VO2max and isometric back strength), cardiovascular markers (CRP, total cholesterol, LDL-c, HDL-c, homocysteine) and adipokine levels (leptin, adiponectin, resistin, IL-6 and TNF-alpha). There were no significant changes in anthropometric parameters and body composition in any of the groups following 6 and 12 months of exercise training. Leptin, IL-6 levels and systolic blood pressure were significantly elevated in OBG before the training. Regular exercise decreased HDL-c, leptin, adiponectin and resistin levels and diastolic blood pressure in OVG. In OBG, exercise diminished HDL-c, homocysteine, leptin, resistin, IL-6, adiponectin. Moderate exercise had no effect on the body composition; however, exercise did promote beneficial effects on the low-grade inflammatory state and CVD clinical markers in overweight and obese individuals.

Collaboration


Dive into the Renata Gorjão's collaboration.

Top Co-Authors

Avatar

Rui Curi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge