Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Grimaldi is active.

Publication


Featured researches published by Renata Grimaldi.


American Journal of Mathematics | 2007

Calibrations and isoperimetric profiles

Renata Grimaldi; Pierre Pansu

We equip many noncompact nonsimply connected surfaces with smooth Riemannian metrics whose isoperimetric profile is smooth, a highly nongeneric property. The computation of the profile is based on a calibration argument, a rearrangement argument, the Bol-Fiala curvature dependent inequality, together with new results on the profile of surfaces of revolution and some hardware know-how.


Journal de Mathématiques Pures et Appliquées | 2003

Remplissage et surfaces de révolution

Renata Grimaldi; Pierre Pansu

The filling function of a Riemannian manifold is either linear or at least quadratic. This fact was originally discovered by M. Gromov in 1985. We address the question of the existence of further obstructions. We give a partial answer: every superadditive and superquadratic function is asymptotic to the filling function of a surface of revolution. A function which furthermore satisfies a natural second-order differential inequation is equal to a filling function.


Journal de Mathématiques Pures et Appliquées | 1997

La topologie à l'infini des variétés à géométrie bornée et croissance linéaire

Louis Funar; Renata Grimaldi

Abstract We study the topology at infinity of a non compact riemannian manifold with bounded geometry and linear growth-type.


Geometriae Dedicata | 2004

The Ends of Manifolds with Bounded Geometry, Linear Growth and Finite Filling Area

Louis Funar; Renata Grimaldi

We prove that simply connected open manifolds of bounded geometry, linear growth and sublinear filling growth (e.g. finite filling area) are simply connected at infinity.


Geometriae Dedicata | 2000

Croissance lineaire et géométrie bornée

Renata Grimaldi

We show that on a noncompact manifold which has ‘finite topology at infinity’, there exists a Riemannian metric with ‘bounded geometry’ and linear growth-type.


Rendiconti Del Circolo Matematico Di Palermo | 1983

Sulla geometria asintotica delle foglie di una foliazione

Renata Grimaldi

Pour les feuilles (non-compactes) d’un feuilletageF d’une variété différentiable compacteV ily a une «géométrie riemannienne asymptotique» bien définie à quasiisométrie près.La géométrie euclidiennen-dimensionnelle peut être réaliséc comme une telle géométrie asymptotique.


Differential Geometry and Its Applications | 1995

On systolic growth-type

Renata Grimaldi

Abstract On a noncompact riemannian product ( W n − 1 × S 1 , ℷ 1 ⊕ ℷ 2 ) we construct a new “warped product” type metric ℷ with the same growth-type as ℷ 1 ⊕ ℷ 2 but with arbitrarily high systolic growth.


Journal de Mathématiques Pures et Appliquées | 1992

Sur la croissance du volume dans une classe conforme

Renata Grimaldi; Pierre Pansu


Differential Geometry and Its Applications | 2009

Semianalyticity of isoperimetric profiles

Renata Grimaldi; Stefano Nardulli; Pierre Pansu


Geometriae Dedicata | 1994

Sur la régularité de la fonction croissance d'une variété riemannienne

Renata Grimaldi; Pierre Pansu

Collaboration


Dive into the Renata Grimaldi's collaboration.

Top Co-Authors

Avatar

Pierre Pansu

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

Louis Funar

University of Grenoble

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge