Renata Grimaldi
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renata Grimaldi.
American Journal of Mathematics | 2007
Renata Grimaldi; Pierre Pansu
We equip many noncompact nonsimply connected surfaces with smooth Riemannian metrics whose isoperimetric profile is smooth, a highly nongeneric property. The computation of the profile is based on a calibration argument, a rearrangement argument, the Bol-Fiala curvature dependent inequality, together with new results on the profile of surfaces of revolution and some hardware know-how.
Journal de Mathématiques Pures et Appliquées | 2003
Renata Grimaldi; Pierre Pansu
The filling function of a Riemannian manifold is either linear or at least quadratic. This fact was originally discovered by M. Gromov in 1985. We address the question of the existence of further obstructions. We give a partial answer: every superadditive and superquadratic function is asymptotic to the filling function of a surface of revolution. A function which furthermore satisfies a natural second-order differential inequation is equal to a filling function.
Journal de Mathématiques Pures et Appliquées | 1997
Louis Funar; Renata Grimaldi
Abstract We study the topology at infinity of a non compact riemannian manifold with bounded geometry and linear growth-type.
Geometriae Dedicata | 2004
Louis Funar; Renata Grimaldi
We prove that simply connected open manifolds of bounded geometry, linear growth and sublinear filling growth (e.g. finite filling area) are simply connected at infinity.
Geometriae Dedicata | 2000
Renata Grimaldi
We show that on a noncompact manifold which has ‘finite topology at infinity’, there exists a Riemannian metric with ‘bounded geometry’ and linear growth-type.
Rendiconti Del Circolo Matematico Di Palermo | 1983
Renata Grimaldi
Pour les feuilles (non-compactes) d’un feuilletageF d’une variété différentiable compacteV ily a une «géométrie riemannienne asymptotique» bien définie à quasiisométrie près.La géométrie euclidiennen-dimensionnelle peut être réaliséc comme une telle géométrie asymptotique.
Differential Geometry and Its Applications | 1995
Renata Grimaldi
Abstract On a noncompact riemannian product ( W n − 1 × S 1 , ℷ 1 ⊕ ℷ 2 ) we construct a new “warped product” type metric ℷ with the same growth-type as ℷ 1 ⊕ ℷ 2 but with arbitrarily high systolic growth.
Journal de Mathématiques Pures et Appliquées | 1992
Renata Grimaldi; Pierre Pansu
Differential Geometry and Its Applications | 2009
Renata Grimaldi; Stefano Nardulli; Pierre Pansu
Geometriae Dedicata | 1994
Renata Grimaldi; Pierre Pansu