Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Longo is active.

Publication


Featured researches published by Renata Longo.


Physics in Medicine and Biology | 1998

Low-dose phase contrast x-ray medical imaging

Fulvia Arfelli; M. Assante; V. Bonvicini; A Bravin; Giovanni Cantatore; E. Castelli; L. Dalla Palma; Renata Longo; Alessandro Olivo; S. Pani; Diego Pontoni; P. Poropat; M. Prest; A. Rashevsky; Giuliana Tromba; A. Vacchi; E. Vallazza; Fabrizio Zanconati

Phase contrast x-ray imaging is a powerful technique for the detection of low-contrast details in weakly absorbing objects. This method is of possible relevance in the field of diagnostic radiology. In fact, imaging low-contrast details within soft tissue does not give satisfactory results in conventional x-ray absorption radiology, mammography being a typical example. Nevertheless, up to now all applications of the phase contrast technique, carried out on thin samples, have required radiation doses substantially higher than those delivered in conventional radiological examinations. To demonstrate the applicability of the method to mammography we produced phase contrast images of objects a few centimetres thick while delivering radiation doses lower than or comparable to doses needed in standard mammographic examinations (typically approximately 1 mGy mean glandular dose (MGD)). We show images of a custom mammographic phantom and of two specimens of human breast tissue obtained at the SYRMEP bending magnet beamline at Elettra, the Trieste synchrotron radiation facility. The introduction of an intensifier screen enabled us to obtain phase contrast images of these thick samples with radiation doses comparable to those used in mammography. Low absorbing details such as 50 microm thick nylon wires or thin calcium deposits (approximately 50 microm) within breast tissue, invisible with conventional techniques, are detected by means of the proposed method. We also find that the use of a bending magnet radiation source relaxes the previously reported requirements on source size for phase contrast imaging. Finally, the consistency of the results has been checked by theoretical simulations carried out for the purposes of this experiment.


Medical Physics | 2001

An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field

Alessandro Olivo; Fulvia Arfelli; Giovanni Cantatore; Renata Longo; R. H. Menk; S. Pani; M. Prest; P. Poropat; Luigi Rigon; Giuliana Tromba; E. Vallazza; E. Castelli

Recently, new imaging modalities based on the detection of weak phase perturbations effects, among which are phase contrast and diffraction imaging, have been developed by several researchers. Due to their high sensitivity to weakly absorbing details, these techniques seem to be very promising for applications in the medical field. On the other hand, digital radiology is undergoing a wide diffusion, and its benefits are presently very well understood. Up to now, however, the strong pixel size constraints associated with phase contrast pattern detection limited the possibility of exploiting the advantages of phase contrast in digital radiology applications. In this paper, an innovative setup capable of removing the pixel size constraints, and thus opening the way to low dose digital phase contrast imaging, is described. Furthermore, we introduce an imaging technique based on the detection of radiation scattered at small angles: the information extracted from the sample is increased at no dose expense. We believe that several radiological fields, mammography being the first important example, may benefit from the herein described innovative imaging techniques.


American Journal of Cardiology | 1992

Magnetic resonance imaging in right ventricular dysplasia

C. Ricci; Renata Longo; Lorenzo Pagnan; Ludovico Dalla Palma; Bruno Pinamonti; Fulvio Camerini; Rossana Bussani; Furio Silvestri

Fifteen patients with right ventricular dysplasia were investigated by T1-weighted spin- and gradient-echo pulse sequences, using a protocol that enabled both a subjective analysis of myocardial signal intensity and a quantitative/qualitative analysis of right and left ventricular function. In 8 patients, 3 investigators independently recognized abnormally hyperintense areas in the anatomic sites usually affected by the disease. In 7 of these patients, these areas showed an overlap with a-dyskinetic areas imaged by both magnetic resonance imaging (MRI) and echocardiography. In 1 patient who underwent a cardiac transplant, MRI of the explanted heart showed an excellent correlation between the distribution of the lesions and the in vivo/in vitro features. The data were compared with those from an equivalent sample of patients affected by dilated cardiomyopathy. In the latter patients, no focal hyperintensities were attributed to any anatomic sites in the right ventricule, and no focal a-dyskinetic foci were observed. Furthermore, the 2 groups of patients were significantly different in regard to dimensional and functional quantitative parameters. The results suggest that MRI is useful in integrating echocardiographic data and can be helpful in diagnosing this disease in late stages.


Radiology | 2011

Mammography with Synchrotron Radiation: First Clinical Experience with Phase-Detection Technique

E. Castelli; M. Tonutti; Fulvia Arfelli; Renata Longo; Emilio Quaia; Luigi Rigon; Daniela Sanabor; Fabrizio Zanconati; Diego Dreossi; Alessando Abrami; E. Quai; Paola Bregant; Katia Casarin; Valentina Chenda; R.H. Menk; T. Rokvic; Alessandro Vascotto; Giuliana Tromba; Maria Assunta Cova

PURPOSE To prospectively evaluate the diagnostic contribution of mammography with synchrotron radiation in patients with questionable or suspicious breast abnormalities identified at combined digital mammography (DM) and ultrasonography (US). MATERIALS AND METHODS The ethics committee approved this prospective study, and written informed consent was obtained from all patients. Mammography with synchrotron radiation was performed with a phase-detection technique at a synchrotron radiation laboratory. Forty-nine women who met at least one of the inclusion criteria (palpable mass, focal asymmetry, architectural distortion, or equivocal or suspicious mass at DM; none clarified at US) were enrolled. Forty-seven women (mean age, 57.8 years ± 8.8 [standard deviation]; age range, 43-78 years) completed the study protocol, which involved biopsy or follow-up for 1 year as the reference standard. Breast Imaging Reporting and Data System (BI-RADS) scores of 1-3 were considered to indicate a negative result, while scores 4-5 were considered to indicate a positive result. The visibility of breast abnormalities and the glandular parenchymal structure at DM and at mammography with synchrotron radiation was compared by using the Wilcoxon signed rank test. RESULTS In 29 of the 31 patients with a final diagnosis of benign entity, mammography with synchrotron radiation yielded BI-RADS scores of 1-3. In 13 of the remaining 16 patients with a final diagnosis of malignancy, mammography with synchrotron radiation yielded BI-RADS scores of 4-5. Therefore, a sensitivity of 81% (13 of 16 patients) and a specificity of 94% (29 of 31 patients) were achieved with use of the described BI-RADS dichotomization system. CONCLUSION These study results suggest that mammography with synchrotron radiation can be used to clarify cases of questionable or suspicious breast abnormalities identified at DM. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11100745/-/DC1.


Journal of Synchrotron Radiation | 2012

PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction

Rongchang Chen; Diego Dreossi; Lucia Mancini; R.H. Menk; Luigi Rigon; Tiqiao Xiao; Renata Longo

Synchrotron-radiation computed tomography has been applied in many research fields. Here, PITRE (Phase-sensitive X-ray Image processing and Tomography REconstruction) and PITRE_BM (PITRE Batch Manager) are presented. PITRE supports phase retrieval for propagation-based phase-contrast imaging/tomography (PPCI/PPCT), extracts apparent absorption, refractive and scattering information of diffraction enhanced imaging (DEI), and allows parallel-beam tomography reconstruction for conventional absorption CT data and for PPCT phase retrieved and DEI-CT extracted information. PITRE_BM is a batch processing manager for PITRE: it executes a series of tasks, created via PITRE, without manual intervention. Both PITRE and PITRE_BM are coded in Interactive Data Language (IDL), and have a user-friendly graphical user interface. They are freeware and can run on Microsoft Windows systems via IDL Virtual Machine, which can be downloaded for free and does not require a license. The data-processing principle and some examples of application will be presented.


6TH INTERNATIONAL CONFERENCE ON MEDICAL APPLICATIONS OF SYNCHROTRON RADIATION | 2010

The SYRMEP Beamline of Elettra: Clinical Mammography and Bio‐medical Applications

Giuliana Tromba; Renata Longo; A. Abrami; Fulvia Arfelli; Alberto Astolfo; P. Bregant; Francesco Brun; K. Casarin; V. Chenda; D. Dreossi; Markéta Holá; Jozef Kaiser; Lucia Mancini; Ralf-Hendrik Menk; E. Quai; E. Quaia; L. Rigon; T. Rokvic; N. Sodini; D. Sanabor; Elisabeth Schültke; M. Tonutti; A. Vascotto; Fabrizio Zanconati; Maria Assunta Cova; E. Castelli

At the SYnchrotron Radiation for MEdical Physics (SYRMEP) beamline of Elettra Synchrotron Light Laboratory in Trieste (Italy), an extensive research program in bio‐medical imaging has been developed since 1997. The core program carried out by the SYRMEP collaboration concerns the use of Synchrotron Radiation (SR) for clinical mammography with the aim of improving the diagnostic performance of the conventional technique. The first protocol with patients, started in 2006 has been completed at the end of 2009 and the data analysis is now in progress.Regarding applications different from clinical imaging, synchrotron X‐ray computed microtomography (micro‐CT) is the most used technique, both in absorption and phase contrast. A new software tool, Pore3D, has been developed to perform a quantitative morphological analysis on the reconstructed slices and to access textural information of the sample under study.


Physics in Medicine and Biology | 2004

Breast tomography with synchrotron radiation: preliminary results*

S. Pani; Renata Longo; Diego Dreossi; Francesco Montanari; Alessandro Olivo; Fulvia Arfelli; A. Bergamaschi; P. Poropat; Luigi Rigon; Fabrizio Zanconati; Ludovico Dalla Palma; E. Castelli

A system for in vivo breast imaging with monochromatic x-rays has been designed and built at the synchrotron radiation facility Elettra in Trieste (Italy) and will be operational in 2004. The system design involves the possibility of performing both planar mammography and breast tomography. In the present work, the first results obtained with a test set-up for breast tomography are shown and discussed. Tomographic images of in vitro breasts were acquired using monochromatic x-ray beams in the energy range 20-28 keV and a linear array silicon pixel detector. Tomograms were reconstructed using standard filtered backprojection algorithms; the effect of different filters was evaluated. The attenuation coefficients of fibroglandular and adipose tissue were measured, and a quantitative comparison of images acquired at different energies was performed by calculating the differential signal-to-noise ratio of fibroglandular details in adipose tissue. All images required a dose comparable to the dose delivered in clinical, conventional mammography and showed a high resolution of the breast structures without the overlapping effects that limit the visibility of the structures in 2D mammography. A quantitative evaluation of the images proves that the image quality at a given dose increases in the considered energy range and for the considered breast sizes.


Magnetic Resonance Imaging | 1995

Quality assessment in in vivo NMR spectroscopy: IV. A multicentre trial of test objects and protocols for performance assessment in clinical NMR spectroscopy

Stephen Frederick Keevil; Bruno Barbiroli; David John Collins; Else Rubæk Danielsen; Jürgen Hennig; Ole Henriksen; Martin O. Leach; Renata Longo; M. Lowry; C. Moore; Ewald Moser; Christoph Segebarth; W.M.M.J. Bovée; Franca Podo

A multicentre trial of test objects and protocols for performance assessment in single volume and slice selective magnetic resonance spectroscopy (MRS) was conducted by the European Community Concerted Action on MRI and MRS. The trial assessed phosphorus and proton localisation techniques implemented on commercially available MR systems at ten sites in Europe. At each site, a number of parameters devised by the Concerted Action were measured using prototype test objects. Some of these parameters related to the quality of localisation and others to the overall performance of the spectrometer. Results were obtained for the ISIS, DRESS, STEAM, and PRESS sequences with a range of acquisition parameters, allowing evaluation of the assessment methodology and comparison of the efficacy of various implementations of these localisation techniques. The results of this trial have been important in the development of the Concerted Actions final recommendations for MRS performance assessment, and demonstrate that such assessment provides valuable information in the comparison of spectroscopy data from different sites and in the development of new localisation sequences, and provides a means of quality assurance in MRS.


Physics in Medicine and Biology | 2010

Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography.

Rongchang Chen; Renata Longo; L. Rigon; Fabrizio Zanconati; A. De Pellegrin; Fulvia Arfelli; D. Dreossi; R.‐H. Menk; E. Vallazza; Tiqiao Xiao; E. Castelli

The measurement of the linear attenuation coefficients of breast tissues is of fundamental importance in the field of breast x-ray diagnostic imaging. Different groups have evaluated the linear attenuation coefficients of breast tissues by carrying out direct attenuation measurements in which the specimens were thin and selected as homogeneous as possible. Here, we use monochromatic and high-intensity synchrotron radiation computed tomography (SR CT) to evaluate the linear attenuation coefficients of surgical breast tissues in the energy range from 15 to 26.5 keV. X-ray detection is performed by a custom digital silicon micro-strip device, developed in the framework of the PICASSO INFN experiment. Twenty-three human surgical breast samples were selected for SR CT and histological study. Six of them underwent CT, both as fresh tissue and after formalin fixation, while the remaining 17 were imaged only as formalin-fixed tissues. Our results for fat and fibrous tissues are in good agreement with the published values. However, in contrast to the published data, our measurements show no significant differences between fibrous and tumor tissues. Moreover, our results for fresh and formalin-fixed tissues demonstrate a reduction of the linear attenuation coefficient for fibrous and tumor tissues after fixation.


Physics in Medicine and Biology | 2016

Towards breast tomography with synchrotron radiation at Elettra: First images

Renata Longo; Fulvia Arfelli; R. Bellazzini; U. Bottigli; A. Brez; Francesco Brun; Antonio Brunetti; Pasquale Delogu; F. Di Lillo; Diego Dreossi; Viviana Fanti; Christian Fedon; Bruno Golosio; Nico Lanconelli; Giovanni Mettivier; M. Minuti; P. Oliva; M. Pinchera; Luigi Rigon; Paolo Russo; Antonio Sarno; G. Spandre; Giuliana Tromba; Fabrizio Zanconati

The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)(3) CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR.

Collaboration


Dive into the Renata Longo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Dreossi

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuliana Tromba

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

S. Pani

University of Surrey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge