Renata Siqueira Scatolin
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renata Siqueira Scatolin.
Microscopy Research and Technique | 2015
Renata Siqueira Scatolin; Fernando Luiz Alonso-Filho; Rodrigo Galo; Daniela Rios; Maria Cristina Borsatto; Silmara Aparecida Milori Corona
Considering the importance and prevalence of dental erosion, the aim of this in vitro study was to evaluate the influence of different modes of pulse emission of CO2 laser associated or not to acidulated phosphate fluoride (APF) 1.23% gel, in controlling enamel erosion by profilometry. Ninety‐six fragments of bovine enamel were flattened and polished, and the specimens were subjected to initial erosive challenge with hydrochloric acid (pH = 2). Specimens were randomly assigned according to surface treatment: APF 1.23% gel and gel without fluoride (control), and subdivided according to the modes of pulse CO2 laser irradiation: no irradiation (control), continuous, ultrapulse, and repeated pulse (n = 12). After surface treatment, further erosive challenges were performed for 5 days, 4 × 2 min/day. Enamel structure loss was quantitatively determined by a profilometer, after surface treatment and after 5 days of erosive challenges. Two‐away ANOVA revealed a significant difference between the pulse emission mode of the CO2 laser and the presence of fluoride (P ≤ 0.05). The Duncans test showed that CO2 laser irradiation in continuous mode and the specimens only received fluoride, promoted lower enamel loss than that other treatments. A lower dissolution of the enamel prisms was observed when it was irradiated with CO2 laser in continuous mode compared other groups. It can be concluded that CO2 laser irradiation in continuous mode was the most effective to control the enamel structure loss submitted to erosive challenges with hydrochloric acid. Microsc. Res. Tech. 78:654–659, 2015.
Photomedicine and Laser Surgery | 2012
Renata Siqueira Scatolin; Rodrigo Galo; Silmara Aparecida Milori Corona
OBJECTIVE The aim of this study was to evaluate, through a crossover 2×2 in situ trial, the effect of a desensitizing dentifrice associated with CO2 laser irradiation to control the permeability of eroded root dentin. BACKGROUND DATA Facing the increased prevalence of erosive lesion and the need for preventive means to control painful symptoms related to them. METHODS Eighty slabs of bovine root dentin were subjected to initial erosive challenge (citric acid 0.3%, 2 h), followed by a remineralizing period in artificial saliva (24 h). Specimens were then divided according to dentin treatment: desensitizing dentifrice, desensitizing dentifrice+CO2 laser, fluoride anticavity dentifrice. and fluoride anticavity dentifrice+CO2 laser. After a 2-day lead-in period, 10 volunteers wore an intraoral palatal appliance containing four root dentin slabs, in two phases of 5 days each. During the intraoral phase, one side of the appliance was immersed in 0.3% citric acid, and the opposite side was immersed in deionized water, four times a day. One hour after the immersions, all specimens were brushed with dentifrice slurry provided by the researcher. After a 7-day washout period, volunteers were crossed over on the different dentifrice group. Each phase having been completed, the specimens were evaluated for permeability through an optical microscope. RESULTS Data were analyzed using ANOVA and no significant difference (p=0.272) was found between the surface treatments performed on bovine root dentin. CONCLUSIONS It can be concluded that fluoride anticavity or desensitizing dentifrice, regardless of the association with the CO2 laser irradiation, was able to control the permeability of eroded root dentin.
Microscopy Research and Technique | 2014
Taísa Penazzo Lepri; Renata Siqueira Scatolin; Vivian Colucci; Adílis Kalina Alexandria; Lucianne Cople Maia; Cecilia Pedroso Turssi; Silmara Aparecida Milori Corona
The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty‐six slabs of bovine incisors enamel (5 × 3 × 2.5 mm3) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2‐day lead‐in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross‐over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three‐way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2‐laser irradiated and non‐irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. Microsc. Res. Tech. 77:586–593, 2014.
Microscopy Research and Technique | 2018
Rayana Longo Bighetti Trevisan; Renata Siqueira Scatolin; Larissa Moreira Spinola de Castro Raucci; Walter Raucci Neto; Izabel Cristina Fröner
The aim of this study was to evaluate the effect of 24% ethylenediaminetetraacetic acid (EDTA) gel and 2% chlorhexidine gel (CHX) in dentin permeability and smear layer removal from root canals instrumented with NiTi rotary system using histochemical staining and scanning electron microscopy (SEM) analysis. Overall, 43 premolars were classified into two experimental groups, EDTA (n = 20) and CHX (n = 20), and a negative control (NC) (n = 3). All specimens were instrumented and the irrigant solutions were used after each file change. The EDTA group received a final rinse with 5‐ml 1% NaOCl followed by a 5‐ml 0.9% saline solution; the CHX group received a final rinse with 10‐ml 0.9% saline solution; and the negative control group received a final rinse with only 0.9% saline solution. Fifteen teeth from each group were prepared for histochemical staining and evaluation of dentin permeability using the image‐scanning software Axion Vision (v.4.8.2). Five remaining teeth were prepared for analysis using SEM for morphological analysis. The study found that 24% EDTA gel increased the permeability of dentin in all thirds evaluated and also demonstrated an increased cleaning ability, with dentinal walls free of smear layer and open dentinal tubules, as compared to 2% CHX gel. It was concluded that EDTA was efficient in cleaning the dentinal tubules and increased dentin permeability.
Journal of Conservative Dentistry | 2018
Thiago Vinicius Cortez; Isabella Rodrigues Ziotti; Renata Siqueira Scatolin; Silmara Aparecida Milori Corona; Aline Evangelista Souza-Gabriel
Purpose: Composite resin restorations are normally replaced after the internal bleaching of endodontically treated-teeth because the bleaching agent does not alter the color of the restorative material. This study evaluated the effect of 10% sodium ascorbate (SA) applied at different protocols on bleached dentin. Materials and Methods: One-hundred slabs of intracoronary bovine dentin were divided into 5 groups: 2 controls-GI without bleaching (positive), GII bleached with 35% hydrogen peroxide (HP) (negative); and 3 experimentals – GIII. 35% HP + SA at protocol 1 (dripping, washing and drying the solution), GIV. 35% HP + SA at protocol 2 (dripping and aspirating the solution) and GV. 35% HP + SA at protocol 3 (dripping, rubbing and aspirating the solution). Sixty fragments were restored and subjected to shear bond strength test (n = 12). Forty fragments (n = 8) were prepared for chemical analysis (energy dispersive X-ray spectrometry) and surface morphology (scanning electron microscopy). Data were analyzed by ANOVA and Tukey test (P < 0.05). Results: GI (3.169 ± 1.510a) had the highest means values, similar to GIV (2.752 ± 0.961a) and GV (2.981 ± 1.185a) (P < 0.05). Inferior values were obtained in GII (1.472 ± 0.342b) and GIII (2.037 ± 0.742ab) had intermediate values (P > 0.05). Oxygen concentration was reduced in groups treated with SA, and the surface exhibited residual granules of the solution. Conclusion: The 10% SA solution reestablishes the bond strength of restorative material to bleached dentin, especially if active protocols of application and aspiration were used.
Journal of Applied Oral Science | 2018
Renata Siqueira Scatolin; Vivian Colucci; Taísa Penazzo Lepri; Adílis Kalina Alexandria; Lucianne Cople Maia; Rodrigo Galo; Maria Cristina Borsatto; Silmara Aparecida Milori Corona
Abstract Literature has reported positive results regarding the use of lasers in the control of erosive lesions; however, evaluating whether they are effective in the control of the progression of erosive/abrasive lesions is important. Objectives This study aimed to evaluate the effect of the Er:YAG laser irradiation in controlling the progression of erosion associated with abrasive lesions in enamel. Material and methods Bovine incisors were sectioned, flattened and polished. Forty-eight enamel slabs were subjected to treatment in an intraoral phase. Twelve volunteers used an intraoral appliance containing one slab that was irradiated with an Er:YAG laser (5.2 J/cm2, 85 mJ, 2 Hz) and another non-irradiated slab on each side of the appliance, during one phase of 5 d, under a split-mouth design. Devices were subjected to erosive challenges (1% citric acid, 5 min, 3 times a day) and abrasive challenges one h after (brushing force of 1.5 N for 15 s) randomly and independently on each side of the device. Measurements of enamel loss were performed via 3D optical profilometry (μm). We analyzed data using the Kruskal-Wallis and Mann-Whitney tests and morphological characteristics via scanning electron microscopy. Results Following erosive and abrasive challenges, the group that was irradiated with the Er:YAG laser presented less loss of structure than the non-irradiated group. The group that underwent erosion and irradiation did not exhibit a significant difference from the non-irradiated group. Conclusion Irradiation with the Er:YAG laser did not control the loss of structure of enamel subjected to erosion but did control abrasion after erosion.
Journal of Adhesion Science and Technology | 2017
Aline Evangelista Souza-Gabriel; Fabiana Almeida Curylofo-Zotti; Renata Siqueira Scatolin; Silmara Aparecida Milori Corona
Abstract To assess the effect of Er:YAG and diode lasers on the shear bond strength (SBS) of adhesive systems to bovine dentin submitted to bleaching with a high concentration agent. One hundred and twenty bovine dentin fragments were used. Fragments were distributed into 12 groups (n = 10) considering the bleaching (present or not), surface post-treatment (untreated, Er:YAG laser or diode laser) and adhesive system (total-etching or self-etching). Specimens received two applications of 38% hydrogen peroxide. Er:YAG laser (2940 nm, 200 mJ, 4 Hz) and diode laser (980 nm, 1.5 W) were applied for 15 s on bleached dentin surface. Restoration was performed with resin using split matrix. Specimens were submitted to SBS test and data (MPa) were analyzed by ANOVA and Tukey’s test (α = 0.05). SBS of bleached specimens decreased in comparison with non-bleached (p < 0.05). The highest values were obtained for the post-treatment with Er:YAG laser (p < 0.05). Total-etching adhesive was superior to self-etching system (p < 0.05). The irradiation of bleached dentin with Er:YAG laser followed by the application of the total-etching adhesive had similar SBS to unbleached dentin with no post-treatment (control) (p > 0.05). Er:YAG laser post-treatment followed by the total-etching adhesive system improve the bond strength of restorative material to bleached dentin.
Contemporary Clinical Dentistry | 2016
Ana Barbara Araujo Loiola; Aline Evangelista Souza-Gabriel; Renata Siqueira Scatolin; Silmara Aparecida Milori Corona
Background: Hydrogen peroxide (HP) at lower concentration can provide less alteration on enamel surface and when combined with laser therapy, could decrease tooth sensitivity. This in situ study evaluated the influence of 15% and 35% HP gel activated by lighting-emitting diode (LED)/laser light for in-office tooth bleaching. Materials and Methods: Forty-four bovine enamel slabs were polished and subjected to surface microhardness (load of 25 g for 5 s). The specimens were placed in intraoral palatal devices of 11 volunteers (n = 11). Sample was randomly distributed into four groups according to the bleaching protocol: 15% HP, 15% HP activated by LED/laser, 35% HP, and 35% HP activated by LED/laser. The experimental phase comprised 15 days and bleaching protocols were performed on the 2 nd and 9 th days. Surface microhardness (KHN) and color changes were measured and data were analyzed by ANOVA (α = 0.05). Results: There were no significant differences in microhardness values neither in color alteration of enamel treated with 15% HP and 35% HP activated or not by LED/laser system (P > 0.05). Conclusions: Both concentrations of HP (15 or 35%), regardless of activated by an LED/laser light, did not affect the surface microhardness and had the same effectiveness in enamel bleaching.
Brazilian Dental Journal | 2015
Mariana Alencar Nemezio; Sandra Chiga Carvalho; Renata Siqueira Scatolin; Vivian Colucci; Rodrigo Galo; Silmara Aparecida Milori Corona
This study evaluated the combined effect of fluoride varnish and Er:YAG laser on the permeability of eroded bovine root dentin. After initial erosive challenge followed by a remineralization period, the specimens were divided in two groups according to the treatment - fluoride varnish and non-fluoride varnish - and were subdivided according to the irradiation protocol: Er:YAG laser (100 mJ, 3 Hz, 12.8 J/cm2per pulse, non-contact and defocus mode) and non-irradiated. After a lead-in period, 7 volunteers wore a palatal device containing 4 specimens that were subjected to erosive challenges. At the first experimental phase, 4 volunteers used specimens treated with fluoride varnish and fluoride varnish+Er:YAG laser and 3 volunteers used specimens treated with non-fluoride varnish and non-fluoride varnish+Er:YAG laser. After a washout period, volunteers were crossed to treatments, characterizing a 2x2 crossover experiment. At the end of the experimental phase, the quantitative response variable was obtained by permeability analysis and the qualitative response by scanning electron microscopy (SEM). Two-way ANOVA and Tukey-Kramers test revealed that specimens treated with fluoride varnish+Er:YAG laser showed the lowest permeability and a significant difference was found between this group and the others. When varnish (fluoride/non-fluoride) was applied in the absence of Er:YAG laser, higher permeability was found when compared to the laser-treated groups. SEM evaluations showed partially or completely obliterated dentinal tubules when specimens were treated with fluoride varnish+Er:YAG laser. It may be concluded that Er:YAG laser was able to control the permeability of eroded root dentin and the combination with fluoride varnish increased laser action.
Lasers in Medical Science | 2015
Renata Siqueira Scatolin; Vivian Colucci; T. P. Lepri; Adílis Kalina Alexandria; Lucianne Cople Maia; Rodrigo Galo; Maria Cristina Borsatto; Silmara Aparecida Milori Corona