Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Tiscoski Nesi is active.

Publication


Featured researches published by Renata Tiscoski Nesi.


Phytomedicine | 2012

Effects of Euterpe oleracea Mart. (AÇAÍ) extract in acute lung inflammation induced by cigarette smoke in the mouse

Roberto Soares de Moura; Thiago Santos Ferreira; Alan Aguiar Lopes; Karla Maria Pereira Pires; Renata Tiscoski Nesi; Angela Castro Resende; Pergentino José Cunha Souza; Antonio Jorge Ribeiro da Silva; Ricardo Moreira Borges; Luís Cristóvão Porto; Samuel Santos Valença

Short term inhalation of cigarette smoke (CS) induces significant lung inflammation due to an imbalance of oxidant/antioxidant mechanisms. Açai fruit (Euterpe oleracea) has significant antioxidant and anti-inflammatory actions. The present study aimed to determine whether oral administration of an açai stone extract (ASE) could reduce lung inflammation induced by CS. Thirty C57BL/6 mice were assigned to three groups (n=10 each): the Control+A group was exposed to ambient air and treated orally with ASE 300 mg/kg/day; the CS group was exposed to smoke from 6 cigarettes per day for 5 days; and the CS+A group was exposed to smoke from 6 cigarettes per day for 5 days and treated orally with ASE (300 mg/kg/day). On day 6, all mice were sacrificed. After bronchoalveolar lavage, the lungs were removed for histological and biochemical analyses. The CS group exhibited increases in alveolar macrophage (AMs) and neutrophil numbers (PMNs), myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase activities (GPx), TNF-α expression, and nitrites levels in lung tissue when compared with the control ones (p<0.001 for all parameters). The AMs, PMNs, MPO, SOD, CAT, GPx and nitrite were significantly reduced by oral administration of ASE when compared with CS group (p<0.001 for all parameters, with exception of AMs p<0.01). The present results suggested that systemic administration of an ASE extract could reduce the inflammatory and oxidant actions of CS. Thus, the results of this study in mice should stimulate future studies on ASE as a potential agent to protect against CS-induced inflammation in humans.


Free Radical Biology and Medicine | 2012

Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema

Manuella Lanzetti; Cristiane Aguiar da Costa; Renata Tiscoski Nesi; Marina Valente Barroso; Vanessa Martins; Tatiana Victoni; Vincent Lagente; Karla Maria Pereira Pires; Patrícia M.R. e Silva; Angela Castro Resende; Luís Cristóvão Porto; Claudia F. Benjamim; Samuel Santos Valença

Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema.


Food and Chemical Toxicology | 2011

Addition of açaí (Euterpe oleracea) to cigarettes has a protective effect against emphysema in mice

Roberto Soares de Moura; Karla Maria Pereira Pires; Thiago Santos Ferreira; Alan Aguiar Lopes; Renata Tiscoski Nesi; Angela Castro Resende; Pergentino José da Cunha Sousa; Antonio Jorge Ribeiro da Silva; Luís Cristóvão Porto; Samuel Santos Valença

Chronic inhalation of cigarette smoke (CS) induces emphysema by the damage contributed by oxidative stress during inhalation of CS. Ingestion of açai fruits (Euterpe oleracea) in animals has both antioxidant and anti-inflammatory effects. This study compared lung damage in mice induced by chronic (60-day) inhalation of regular CS and smoke from cigarettes containing 100mg of hydroalcoholic extract of açai berry stone (CS + A). Sham smoke-exposed mice served as the control group. Mice were sacrificed on day 60, bronchoalveolar lavage was performed, and the lungs were removed for histological and biochemical analyses. Histopathological investigation showed enlargement of alveolar space in CS mice compared to CS + A and control mice. The increase in leukocytes in the CS group was higher than the increase observed in the CS + A group. Oxidative stress, as evaluated by antioxidant enzyme activities, mieloperoxidase, glutathione, and 4-hydroxynonenal, was reduced in mice exposed to CS+A versus CS. Macrophage and neutrophil elastase levels were reduced in mice exposed to CS + A versus CS. Thus, the presence of açai extract in cigarettes had a protective effect against emphysema in mice, probably by reducing oxidative and inflammatory reactions. These results raise the possibility that addition of açaí extract to normal cigarettes could reduce their harmful effects.


Pulmonary Pharmacology & Therapeutics | 2011

l-NAME and l-arginine differentially ameliorate cigarette smoke-induced emphysema in mice

Samuel Santos Valença; Carlos Romualdo Rueff-Barroso; Wagner Alves Pimenta; Adriana Correa Melo; Renata Tiscoski Nesi; Marco Aurélio dos Santos Silva; Luís Cristóvão Porto

Nitric oxide (NO) represents one of the most important intra- and extracellular mediators and takes part in both biologic and pathologic processes. This study aimed to verify the treatment with an NO inhibitor and an NO substrate in pulmonary emphysema induced by cigarette smoke (CS) in a murine model. We compared N-acetylcysteine (NAC), a precursor of glutathione, to G-nitro-L-arginine-methyl ester or L-NAME (LN), which is an NO inhibitor, and to l-arginine (LA), which is a substrate for NO formation. Mice were divided into several groups: control, CS, CS + LN, CS + LA, and CS + NAC. Control and CS groups were treated daily with a vehicle, while CS + LN, CS + LA, and CS + NAC groups were treated daily with LN (60 mg/kg), LA (120 mg/kg) and NAC (200 mg/kg), respectively. The bronchoalveolar lavage was analyzed and the lungs were removed for histological and biochemical analysis. CS increases neutrophil number. Neutrophil number was lowest in CS + LN, followed by CS + LA. The lungs of CS + LN, CS + LA and CS + NAC mice were protected compared to the lungs of CS mice, but not equal to the quality of lungs in control mice. The CS group also exhibited increased oxidative stress, which was also present in the CS + LN group and to a lesser extent in the CS + LA group. Tissue inhibitor of metalloproteinase 1 and 2 increased in the CS + LN group and to a lesser extent in the CS + LA group relative to the control group. These results suggest that LN and LA treatment protected the mouse lung from CS. However, NAC treatment was more than LN and LA. We suggest that the protection conferred by LN treatment requires a balance between proteases and antiproteases, and that protection conferred by LA treatment involves the balance between oxidants and antioxidants.


Toxicologic Pathology | 2012

Redox Imbalance and Pulmonary Function in Bleomycin-Induced Fibrosis in C57BL/6, DBA/2, and BALB/c Mice

Marco Aurélio Santos-Silva; Karla Maria Pereira Pires; Eduardo Tavares Lima Trajano; Vanessa Martins; Renata Tiscoski Nesi; Cláudia Farias Benjamin; Mauricio S. Caetano; Cinthya Sternberg; Mariana Nascimento Machado; Walter A. Zin; Samuel Santos Valença; Luís Cristóvão Porto

The development of bleomycin-induced pulmonary fibrosis (BLEO-PF) has been associated with differences in genetic background and oxidative stress status. The authors’ aim was to investigate the crosstalk between the redox profile, lung histology, and respiratory function in BLEO-PF in C57BL/6, DBA/2, and BALB/c mice. BLEO-PF was induced with a single intratracheal dose of bleomycin (0.1 U/mouse). Twenty-one days after bleomycin administration, the mortality rate was over 50% in C57BL/6 and 20% in DBA/2 mice, and BLEO-PF was not observed in BALB/c. There was an increase in lung static elastance (p < .001), viscoelastic/inhomogeneous pressure (p < .05), total pressure drop after flow interruption (p < .01), and ΔE (p < .05) in C57BL/6 mice. The septa volume increased in C57BL/6 (p < .05) and DBA/2 (p < .001). The levels of IFN-γ were reduced in C57BL/6 mice (p < .01). OH-proline levels were increased in C57BL/6 and DBA/2 mice (p < .05). SOD activity and expression were reduced in C57BL/6 and DBA/2 mice (p < .001 and p < .001, respectively), whereas catalase was reduced in all strains 21 days following bleomycin administration compared with the saline groups (C57BL/6: p < .05; DBA/2: p < .01; BALB/c: p < .01). GPx activity and GPx1/2 expression decreased in C57BL/6 (p < .001). The authors conclude that BLEO-PF resistance may also be related to the activity and expression of SOD in BALB/c mice.


Bioorganic & Medicinal Chemistry | 2013

Antioxidant action of propolis on mouse lungs exposed to short-term cigarette smoke.

Alan Aguiar Lopes; Thiago Santos Ferreira; Renata Tiscoski Nesi; Manuella Lanzetti; Karla Maria Pereira Pires; Ari Miranda da Silva; Ricardo Moreira Borges; Antonio Jorge Ribeiro da Silva; Samuel Santos Valença; Luís Cristóvão Porto

Propolis is a natural product with antioxidant properties. In this study, we tested the efficacy of propolis against acute lung inflammation (ALI) caused by cigarette smoke (CS). C57BL6 male mice were exposed to CS and treated with propolis (200mg/kg orally, CS+P) or only with propolis (P). A Control group treated with propolis was sham-smoked (Control+P). We collected the lungs for histological and biochemical analyses. We observed an increase in alveolar macrophages and neutrophils in the CS group compared with the Control+P. These counts reduced in the CS+P group compared to the CS group. The treatment with propolis normalized all biochemical parameters in the CS+P group compared with the CS group, including nitrite, myeloperoxidase level, antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase), reduced glutathione/oxidized glutathione ratio and malondialdehyde. Additionally, TNF-α expression reduced in the CS+P group when compared with the CS group. These data imply a potential antioxidant and anti-inflammatory role for propolis with regard to ALI caused by CS in mice.


Jornal Brasileiro De Pneumologia | 2014

Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

Samanta Portão de Carlos; Alexandre Simões Dias; Luiz Alberto Forgiarini Junior; Patrícia Damiani Patricio; Thaise Graciano; Renata Tiscoski Nesi; Samuel Santos Valença; Adriana M. Güntzel Chiappa; Gerson Cipriano; Claudio Teodoro de Souza; Gaspar R. Chiappa

OBJECTIVE To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.


PLOS ONE | 2013

Undernutrition Affects Cell Survival, Oxidative Stress, Ca2+ Handling and Signaling Pathways in Vas Deferens, Crippling Reproductive Capacity

Humberto Muzi-Filho; Camila G. P. Bezerra; Alessandro M. Souza; Leonardo C. Boldrini; Christina Maeda Takiya; Felipe Leite de Oliveira; Renata Tiscoski Nesi; Samuel Santos Valença; Marcelo Einicker-Lamas; Adalberto Vieyra; Lucienne S. Lara; Valéria M.N. Cunha

Background The aim of this work was to investigate the mechanisms by which chronic malnutrition (CM) affects vas deferens function, leading to compromised reproductive capacity. Previous studies have shown that maternal malnutrition affects the reproductive tracts of adult male offspring. However, little is known about the effects of CM, a widespread life-long condition that persists from conception throughout growth to adult life. Methodology/Principal Findings Young adult male rats, which were chronically malnourished from weaning, presented decreased total and haploid cells in the vas deferens, hypertrophy of the muscle layer in the epididymal portion of the vas deferens and intense atrophy of the muscular coat in its prostatic portion. At a molecular level, the vas deferens tissue of CM rats exhibited a huge rise in lipid peroxidation and protein carbonylation, evidence of an accentuated increase in local reactive oxygen species levels. The kinetics of plasma membrane Ca2+-ATPase activity and its kinase-mediated phosphorylation by PKA and PKC in the vas deferens revealed malnutrition-induced modifications in velocity, Ca2+ affinity and regulation of Ca2+ handling proteins. The severely crippled content of the 12-kDa FK506 binding protein, which controls passive Ca2+ release from the sarco(endo) plasmic reticulum, revealed another target of malnutrition related to intracellular Ca2+ handling, with a potential effect on forward propulsion of sperm cells. As a possible compensatory response, malnutrition led to enhanced sarco(endo) plasmic reticulum Ca2+-ATPase activity, possibly caused by stimulatory PKA-mediated phosphorylation. Conclusions/Significance The functional correlates of these cellular and molecular hallmarks of chronic malnutrition on the vas deferens were an accentuated reduction in fertility and fecundity.


International Journal of Chronic Obstructive Pulmonary Disease | 2016

Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice.

Renata Tiscoski Nesi; Priscila S. Souza; Giulia Pedroso dos Santos; Anand Thirupathi; Paulo Cesar Lock Silveira; Luciano A. Silva; Samuel Santos Valença; Ricardo A. Pinho

Reactive oxygen species (ROS) are important in the pathogenesis of pulmonary injury induced by cigarette smoke (CS) exposure, and physical exercise (Ex) is useful in combating impaired oxidative process. We verified the preventive effects of Ex on lung oxidative markers induced by smoking. In this study, 36 mice (C57BL-6, 30–35 g) were split into four groups: control, CS, Ex, and CS plus Ex. Ex groups were given prior physical training in water (2×30 min/d, 5 days/wk, 8 weeks). After training, the CS groups were subjected to passive exposure to four cigarettes, 3 × per day, for 60 consecutive days. After 24 hours from the last exposure, CS animals were sacrificed, and lung samples were collected for further analysis. Left lung sample was prepared for histological analysis, and right lung was used for biochemical analysis (superoxide, hydroxyproline, lipid peroxidation [thiobarbituric acid reactive species], protein carbonylation [carbonyl groups formation], superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx] activities). Group comparisons were evaluated by analysis of variance (ANOVA). Results were expressed as mean ± standard deviation, with P<0.05 considered significantly different. Preventive Ex impeded histological changes and increased the enzymatic defense system (SOD and GPx) by reducing oxidative damage in lipids and proteins. This preventive effect of prior physical Ex alleviates damage caused by CS exposure.


Free Radical Research | 2017

Pharmacological modulation of reactive oxygen species (ROS) improves the airway hyperresponsiveness by shifting the Th1 response in allergic inflammation induced by ovalbumin

Renata Tiscoski Nesi; Marina Valente Barroso; Valdirene S. Muniz; Ana Carolina Arantes; Marco A. Martins; Lycia de Brito Gitirana; Josiane S. Neves; Claudia F. Benjamim; Manuella Lanzetti; Samuel Santos Valença

Abstract Asthma is an allergic inflammation driven by the Th2 immune response with release of cytokines such as IL-4 and IL-13, which contribute to the airflow limitations and airway hyperresponsiveness (AHR). The involvement of oxidative stress in this process is well-established, but the specific role of the superoxide anion and nitric oxide in asthma are poorly understood. Thus, the aim of this study was to investigate the mechanisms underlying the superoxide anion/nitric oxide production and detoxification in a murine asthma model. BALB/c male mice were sensitised and challenged with ovalbumin (OVA). Pretreatments with either apocynin (14 mg/kg) or allopurinol (25 mg/kg) (superoxide anion synthesis inhibitors), aminoguanidine (50 mg/kg) (nitric oxide synthesis inhibitor) or diethyldithiocarbamate (100 mg/kg) (superoxide dismutase inhibitor) were performed 1 h before the challenge. Our data showed that apocynin and allopurinol ameliorated AHR and reduced eosinophil peroxidase, as well as IL-4 and IL-13 levels. Apocynin also abrogated leukocyte peribronchiolar infiltrate and increased IL-1β secretion. Aminoguanidine preserved lung function and shifted the Th2 to the Th1 response with a reduction of IL-4 and IL-13 and increase in IL-1β production. Diethyldithiocarbamate prevented neither allergen-induced AHR nor eosinophil peroxidase (EPO) generation. All treatments protected against oxidative damage observed by a reduction in TBARS levels. Taken together, these results suggest that AHR in an asthma model can be avoided by the down-regulation of superoxide anion and nitric oxide synthesis in a mechanism that is independent of a redox response. This down-regulation is also associated with a transition in the typical immunological Th2 response toward the Th1 profile.

Collaboration


Dive into the Renata Tiscoski Nesi's collaboration.

Top Co-Authors

Avatar

Samuel Santos Valença

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Luís Cristóvão Porto

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Manuella Lanzetti

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Aguiar Lopes

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Marina Valente Barroso

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Claudia F. Benjamim

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Thiago Santos Ferreira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Angela Castro Resende

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Jackson Nogueira Alves

Rio de Janeiro State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge