Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renate Kirschner-Schwabe is active.

Publication


Featured researches published by Renate Kirschner-Schwabe.


Nature Medicine | 2013

Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL

Gannie Tzoneva; Arianne Perez-Garcia; Zachary Carpenter; Hossein Khiabanian; Valeria Tosello; Maddalena Allegretta; Elisabeth Paietta; Janis Racevskis; Jacob M. Rowe; Martin S. Tallman; Maddalena Paganin; Giuseppe Basso; Jana Hof; Renate Kirschner-Schwabe; Teresa Palomero; Raul Rabadan; Adolfo A. Ferrando

Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5′-nucleotidase II gene (NT5C2), which encodes a 5′-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.


Journal of Clinical Oncology | 2011

Mutations and Deletions of the TP53 Gene Predict Nonresponse to Treatment and Poor Outcome in First Relapse of Childhood Acute Lymphoblastic Leukemia

Jana Hof; Stefanie Krentz; Claudia van Schewick; Shabnam Shalapour; Peter Rhein; Leonid Karawajew; Wolf-Dieter Ludwig; Karl Seeger; Günter Henze; Arend von Stackelberg; Christian Hagemeier; Cornelia Eckert; Renate Kirschner-Schwabe

PURPOSE In the clinical management of children with relapsed acute lymphoblastic leukemia (ALL), treatment resistance remains a major challenge. Alterations of the TP53 gene are frequently associated with resistance to chemotherapy, but their significance in relapsed childhood ALL has remained controversial because of small studies. PATIENTS AND METHODS Therefore, we systematically studied 265 first-relapse patients enrolled in the German Acute Lymphoblastic Leukemia Relapse Berlin-Frankfurt-Mü nster 2002 (ALL-REZ BFM 2002) trial for sequence and copy number alterations of the TP53 gene by using direct sequencing and multiplex ligation-dependent probe amplification. RESULTS We observed copy number and sequence alterations of TP53 in 12.4% (27 of 218) of patients with B-cell precursor ALL and 6.4% (three of 47) of patients with T-cell ALL relapse. Backtracking to initial ALL in 23 matched samples revealed that 54% of all TP53 alterations were gained at relapse. Within B-cell precursor ALL, TP53 alterations were consistently associated with nonresponse to chemotherapy (P < .001) and poor event-free survival (P < .001) and overall survival rates (P = .002). TP53 alterations also had a significant impact on survival within intermediate-risk (S2) and high-risk (S3/S4) relapse patients (P = .007 and P = .019, respectively). This prognostic significance of TP53 alterations was confirmed in multivariate analysis. Besides their clinical impact, TP53 alterations were associated with a higher fraction of leukemic cells in S/G(2)-M phase of the cell cycle at relapse diagnosis. CONCLUSION Alterations of the TP53 gene are of particular importance in the relapse stage of childhood ALL, in which they independently predict high risk of treatment failure in a significant number of patients. Therefore, they will aid in future risk assessment of children with ALL relapse.


Blood | 2014

Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition

Julie Irving; Elizabeth Matheson; Lynne Minto; Helen Blair; Marian Case; Christina Halsey; Isabella Swidenbank; Frida Ponthan; Renate Kirschner-Schwabe; Stefanie Groeneveld-Krentz; Jana Hof; James M. Allan; Christine J. Harrison; Josef Vormoor; Arend von Stackelberg; Cornelia Eckert

For most children who relapse with acute lymphoblastic leukemia (ALL), the prognosis is poor, and there is a need for novel therapies to improve outcome. We screened samples from children with B-lineage ALL entered into the ALL-REZ BFM 2002 clinical trial (www.clinicaltrials.gov, #NCT00114348) for somatic mutations activating the Ras pathway (KRAS, NRAS, FLT3, and PTPN11) and showed mutation to be highly prevalent (76 from 206). Clinically, they were associated with high-risk features including early relapse, central nervous system (CNS) involvement, and specifically for NRAS/KRAS mutations, chemoresistance. KRAS mutations were associated with a reduced overall survival. Mutation screening of the matched diagnostic samples found many to be wild type (WT); however, by using more sensitive allelic-specific assays, low-level mutated subpopulations were found in many cases, suggesting that they survived up-front therapy and subsequently emerged at relapse. Preclinical evaluation of the mitogen-activated protein kinase kinase 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) showed significant differential sensitivity in Ras pathway-mutated ALL compared with WT cells both in vitro and in an orthotopic xenograft model engrafted with primary ALL; in the latter, reduced RAS-mutated CNS leukemia. Given these data, clinical evaluation of selumetinib may be warranted for Ras pathway-mutated relapsed ALL.


Nature Medicine | 2015

Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL

Benshang Li; Hui Li; Yun Bai; Renate Kirschner-Schwabe; Jun Yang; Yao Chen; Gang Lu; Gannie Tzoneva; Xiaotu Ma; Tongmin Wu; Wenjing Li; Haisong Lu; Lixia Ding; Huanhuan Liang; Xiaohang Huang; Minjun Yang; Lei Jin; Hui Kang; Shuting Chen; Alicia Du; Shuhong Shen; Jianping Ding; Hongzhuan Chen; Jing Chen; Arend von Stackelberg; Long-Jun Gu; Jinghui Zhang; Adolfo A. Ferrando; Jing-Yan Tang; Shengyue Wang

Relapse is the leading cause of mortality in children with acute lymphoblastic leukemia (ALL). Among chemotherapeutics, thiopurines are key drugs in ALL combination therapy. Using whole-exome sequencing, we identified relapse-specific mutations in the phosphoribosyl pyrophosphate synthetase 1 gene (PRPS1), which encodes a rate-limiting purine biosynthesis enzyme, in 24/358 (6.7%) relapsed childhood B cell ALL (B-ALL) cases. All individuals who harbored PRPS1 mutations relapsed early during treatment, and mutated ALL clones expanded exponentially before clinical relapse. Our functional analyses of PRPS1 mutants uncovered a new chemotherapy-resistance mechanism involving reduced feedback inhibition of de novo purine biosynthesis and competitive inhibition of thiopurine activation. Notably, the de novo purine synthesis inhibitor lometrexol effectively abrogated PRPS1 mutant–driven drug resistance. These results highlight the importance of constitutive activation of the de novo purine synthesis pathway in thiopurine resistance, and they offer therapeutic strategies for the treatment of relapsed and thiopurine-resistant ALL.


Leukemia | 2013

Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia.

S Krentz; Jana Hof; A. Mendioroz; R. Vaggopoulou; Petra Dörge; Claudio Lottaz; Julia C. Engelmann; T. W. L. Groeneveld; K Seeger; Christian Hagemeier; Günter Henze; C Eckert; A von Stackelberg; Renate Kirschner-Schwabe

Despite risk-adapted treatment, survival of children with relapse of acute lymphoblastic leukemia (ALL) remains poor compared with that of patients with initial diagnosis of ALL. Leukemia-associated genetic alterations may provide novel prognostic factors to refine present relapse treatment strategies. Therefore, we investigated the clinical relevance of 13 recurrent genetic alterations in 204 children treated uniformly for relapsed B-cell precursor ALL according to the ALL-REZ BFM 2002 protocol. The most common alterations were deletions of CDKN2A/2B, IKZF1, PAX5, ETV6, fusion of ETV6-RUNX1 and deletions and/or mutations of TP53. Multivariate analysis identified IKZF1 deletion and TP53 alteration as independent predictors of inferior outcome (P=0.002 and P=0.001). Next, we investigated how both alterations can improve the established risk stratification in relapsed ALL. Intermediate-risk relapse patients with low minimal residual disease are currently considered to have a good prognosis. In this group, deletion of IKZF1 and alteration of TP53 identify patients with significantly inferior outcome (P<0.001). In high-risk relapse patients, deletion of IKZF1 is strongly predictive of a second relapse after stem cell transplantation (P<0.001). We conclude that IKZF1 and TP53 represent relevant prognostic factors that should be considered in future risk assessment of children with relapsed ALL to indicate treatment intensification or intervention.


Haematologica | 2014

The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse

Obul R. Bandapalli; Stephanie Schuessele; Joachim B. Kunz; Tobias Rausch; Adrian M. Stütz; Noa Tal; Ifat Geron; Nava Gershman; Shai Izraeli; Juliane Eilers; Nina Vaezipour; Renate Kirschner-Schwabe; Jana Hof; Arend von Stackelberg; Martin Schrappe; Martin Stanulla; Martin Zimmermann; Rolf Koehler; Smadar Avigad; Rupert Handgretinger; Viktoras Frismantas; Jean Pierre Bourquin; Beat C. Bornhauser; Jan O. Korbel; Martina U. Muckenthaler; Andreas E. Kulozik

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that accounts for approximately 15% of pediatric acute lymphoblastic leukemias. A variety of genetic events affecting cellular processes such as the cell cycle, differentiation and survival have been identified in


Clinical Cancer Research | 2006

Expression of Late Cell Cycle Genes and an Increased Proliferative Capacity Characterize Very Early Relapse of Childhood Acute Lymphoblastic Leukemia

Renate Kirschner-Schwabe; Claudio Lottaz; Jörn Tödling; Peter Rhein; Leonid Karawajew; Cornelia Eckert; Arend von Stackelberg; Ute Ungethüm; Dennis Kostka; Andreas E. Kulozik; Wolf-Dieter Ludwig; Günter Henze; Rainer Spang; Christian Hagemeier; Karl Seeger

Purpose: In childhood acute lymphoblastic leukemia (ALL), ∼25% of patients suffer from relapse. In recurrent disease, despite intensified therapy, overall cure rates of 40% remain unsatisfactory and survival rates are particularly poor in certain subgroups. The probability of long-term survival after relapse is predicted from well-established prognostic factors (i.e., time and site of relapse, immunophenotype, and minimal residual disease). However, the underlying biological determinants of these prognostic factors remain poorly understood. Experimental Design: Aiming at identifying molecular pathways associated with these clinically well-defined prognostic factors, we did gene expression profiling on 60 prospectively collected samples of first relapse patients enrolled on the relapse trial ALL-REZ BFM 2002 of the Berlin-Frankfurt-Münster study group. Results: We show here that patients with very early relapse of ALL are characterized by a distinctive gene expression pattern. We identified a set of 83 genes differentially expressed in very early relapsed ALL compared with late relapsed disease. The vast majority of genes were up-regulated and many were late cell cycle genes with a function in mitosis. In addition, samples from patients with very early relapse showed a significant increase in the percentage of S and G2-M phase cells and this correlated well with the expression level of cell cycle genes. Conclusions: Very early relapse of ALL is characterized by an increased proliferative capacity of leukemic blasts and up-regulated mitotic genes. The latter suggests that novel drugs, targeting late cell cycle proteins, might be beneficial for these patients that typically face a dismal prognosis.


Leukemia | 2007

Gene expression shift towards normal B cells, decreased proliferative capacity and distinct surface receptors characterize leukemic blasts persisting during induction therapy in childhood acute lymphoblastic leukemia

Peter Rhein; Stefanie Scheid; Richard Ratei; Christian Hagemeier; Karl Seeger; Renate Kirschner-Schwabe; A. Moericke; Martin Schrappe; Rainer Spang; Wolf-Dieter Ludwig; Leonid Karawajew

In childhood acute lymphoblastic leukemia (ALL), persistence of leukemic blasts during therapy is of crucial prognostic significance. In the present study, we address molecular and cell biologic features of blasts persisting after 1 week of induction glucocorticoid therapy. Genome-wide gene expression analysis of leukemic samples from precursor B-cell ALL patients (n=18) identified a set of genes differentially expressed in blasts at diagnosis day 0 (d0) and persisting on day 8 (d8). Expression changes indicate a shift towards mature B cells, inhibition of cell cycling and increased expression of adhesion (CD11b/ITGAM) and cytokine (CD119/IFNGR1) receptors. A direct comparison with normal B cells, which are largely therapy resistant, confirmed the differentiation shift at the mRNA (n=10) and protein (n=109) levels. Flow cytometric analysis in independent cohorts of patients confirmed both a decreased proliferative activity (n=13) and the upregulation of CD11b and CD119 (n=29) in d8 blasts. The differentiation shift and low proliferative activity in d8 blasts may account for the persistence of blasts during therapy and affect their sensitivity to further therapeutic treatment. CD11b and CD119 are potential specific markers for d8 blast persistence and detection of minimal residual disease, which warrant further investigation.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia

Koichi Oshima; Hossein Khiabanian; Ana C. da Silva-Almeida; Gannie Tzoneva; Francesco Abate; Alberto Ambesi-Impiombato; Marta Sanchez-Martin; Zachary Carpenter; Alex Penson; Arianne Perez-Garcia; Cornelia Eckert; Concepción Nicolás; Milagros Balbín; Maria Luisa Sulis; Motohiro Kato; Katsuyoshi Koh; Maddalena Paganin; Giuseppe Basso; Julie M. Gastier-Foster; Meenakshi Devidas; Mignon L. Loh; Renate Kirschner-Schwabe; Teresa Palomero; Raul Rabadan; Adolfo A. Ferrando

Significance Relapsed acute lymphoblastic leukemia (ALL) is associated with chemotherapy resistance and poor prognosis. This study analyzes the emergence of acquired mutations in relapsed ALL samples, identifying genes implicated in disease progression and defining the process of clonal evolution leading to relapse. These analyses revealed that ALL relapse emerges from subclonal populations sharing only part of the mutations present in the dominant leukemia population found at diagnosis. Moreover, we show mutations in genes implicated in chemotherapy resistance pathways at relapse. RAS mutations are highly prevalent in high-risk ALL, yet their capacity to confer resistance to methotrexate and sensitivity to vincristine, two core drugs used in the treatment of ALL, influences their positive or negative selection at relapse. Although multiagent combination chemotherapy is curative in a significant fraction of childhood acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die because of chemorefractory disease. Here we used whole-exome and whole-genome sequencing to analyze the mutational landscape at relapse in pediatric ALL cases. These analyses identified numerous relapse-associated mutated genes intertwined in chemotherapy resistance-related protein complexes. In this context, RAS-MAPK pathway-activating mutations in the neuroblastoma RAS viral oncogene homolog (NRAS), kirsten rat sarcoma viral oncogene homolog (KRAS), and protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) genes were present in 24 of 55 (44%) cases in our series. Interestingly, some leukemias showed retention or emergence of RAS mutant clones at relapse, whereas in others RAS mutant clones present at diagnosis were replaced by RAS wild-type populations, supporting a role for both positive and negative selection evolutionary pressures in clonal evolution of RAS-mutant leukemia. Consistently, functional dissection of mouse and human wild-type and mutant RAS isogenic leukemia cells demonstrated induction of methotrexate resistance but also improved the response to vincristine in mutant RAS-expressing lymphoblasts. These results highlight the central role of chemotherapy-driven selection as a central mechanism of leukemia clonal evolution in relapsed ALL, and demonstrate a previously unrecognized dual role of RAS mutations as drivers of both sensitivity and resistance to chemotherapy.


Investigative Ophthalmology & Visual Science | 2010

Cone versus Rod Disease in a Mutant Rpgr Mouse Caused by Different Genetic Backgrounds

Sandra Brunner; Sergej Skosyrski; Renate Kirschner-Schwabe; Klaus-Peter Knobeloch; John Neidhardt; Silke Feil; Esther Glaus; Ulrich F.O. Luhmann; Klaus Rüther; Wolfgang Berger

PURPOSE To establish mouse models for RPGR-associated diseases by generating and characterizing an Rpgr mutation (in-frame deletion of exon 4) in two different genetic backgrounds (BL/6 and BALB/c). METHODS Gene targeting in embryonic stem (ES) cells was performed to introduce a in-frame deletion of exon 4 in the Rpgr gene (Rpgr(DeltaEx4)). Subsequently, the mutation was introduced in two different inbred mouse strains by successive breeding. Mutant and wild-type mice of both strains were characterized by electroretinography (ERG) and histology at five time points (1, 3, 6, 9, and 12 months). RPGR transcript amounts were assessed by quantitative RT-PCR. A variety of photoreceptor proteins, including RPGR-ORF15, RPGRIP, PDE6delta/PrBPdelta, rhodopsin, and cone opsin, were localized on retinal sections by immunohistochemistry. RESULTS Mislocalization of rhodopsin and cone opsin was an early pathologic event in mutant mice of both lines. In contrast, RPGR-ORF15 as well as RPGRIP1 and PDE6delta/PrBPdelta showed similar localizations in mutant and wild-type animals. Functional and histologic studies revealed a mild rod-dominated phenotype in mutant male mice on the BL/6 background, whereas a cone-dominated phenotype was observed for the same mutation in the BALB/c background. CONCLUSIONS Both Rpgr mutant mouse lines developed retinal disease with a striking effect of the genetic background. Cone-specific modifiers might influence the retinal phenotype in the BALB/c strain. The two lines provide models to study RPGR function in rods and cones, respectively.

Collaboration


Dive into the Renate Kirschner-Schwabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge