Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renate Looser is active.

Publication


Featured researches published by Renate Looser.


Molecular and Cellular Biology | 2001

Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase.

Xiu-Fen Ming; Georg Stoecklin; Min Lu; Renate Looser; Christoph Moroni

ABSTRACT AU-rich elements (ARE) present in the 3′ untranslated regions of many cytokines and immediate-early genes are responsible for targeting the transcripts for rapid decay. We present evidence from cotransfection experiments in NIH 3T3 cells that two signaling pathways, one involving phosphatidylinositol 3-kinase (PI3-K), and one involving the p38 mitogen-activated protein kinase (MAPK), lead to stabilization of interleukin-3 mRNA in parallel. Stabilization mediated by either of the two pathways was antagonized by tristetraprolin (TTP), an AU-binding protein known to promote constitutive decay of ARE-containing transcripts. Remarkably, the stabilizing AU-binding protein HuR, in collaboration with p38 MAPK but not with PI3-K, could overcome the destabilizing effect of TTP. These data argue that the stabilizing kinases PI3-K and p38 MAPK do not act through direct inactivation of TTP but via activating pathway-specific stabilizing AU-binding proteins. Our data suggest an integrated model of mRNA turnover control, where stabilizing (HuR) and destabilizing (TTP) AU-binding proteins compete and where the former are under the positive control of independent phosphokinase signaling pathways.


The EMBO Journal | 1998

Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis

Tohru Komiya; Sabine Rospert; Carla M. Koehler; Renate Looser; Gottfried Schatz; Katsuyoshi Mihara

Mitochondrial precursor proteins with basic targeting signals may be transported across the outer membrane by sequential binding to acidic receptor sites of increasing affinity. To test this ‘acid chain’ hypothesis, we assayed the interaction of mitochondrial precursors with three acidic receptor domains: the cytosolic domain of Tom20 and the intermembrane space domain of Tom22 and Tim23. The apparent affinity and salt resistance of precursor binding increased in the order Tom20


Molecular and Cellular Biology | 2000

Somatic mRNA Turnover Mutants Implicate Tristetraprolin in the Interleukin-3 mRNA Degradation Pathway

Georg Stoecklin; Xiu-Fen Ming; Renate Looser; Christoph Moroni

ABSTRACT Control of mRNA stability is critical for expression of short-lived transcripts from cytokines and proto-oncogenes. Regulation involves an AU-rich element (ARE) in the 3′ untranslated region (3′UTR) and cognatetrans-acting factors thought to promote either degradation or stabilization of the mRNA. In this study we present a novel approach using somatic cell genetics designed to identify regulators of interleukin-3 (IL-3) mRNA turnover. Mutant cell lines were generated from diploid HT1080 cells transfected with a reporter construct containing green fluorescent protein (GFP) linked to the IL-3 3′UTR. GFP was expressed at low levels due to rapid decay of the mRNA. Following chemical mutagenesis and selection of GFP-overexpressing cells, we could isolate three mutant clones (slowA, slowB, and slowC) with a specific, trans-acting defect in IL-3 mRNA degradation, while the stability of IL-2 and tumor necrosis factor alpha reporter transcripts was not affected. Somatic cell fusion experiments revealed that the mutants are genetically recessive and form two complementation groups. Expression of the tristetraprolin gene in both groups led to reversion of the mutant phenotype, thereby linking this gene to the IL-3 mRNA degradation pathway. The genetic approach described here should allow identification of the defective functions by gene transfer and is also applicable to the study of other mRNA turnover pathways.


Molecular Pharmacology | 2008

Regulatory Cross-Talk between Drug Metabolism and Lipid Homeostasis: Constitutive Androstane Receptor and Pregnane X Receptor Increase Insig-1 Expression

Adrian Roth; Renate Looser; Sharon Blättler; Franck Rencurel; Wendong Huang; David D. Moore; Urs Meyer

Activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) by xenobiotic inducers of cytochromes P450 is part of a pleiotropic response that includes liver hypertrophy, tumor promotion, effects on lipid homeostasis, and energy metabolism. Here, we describe an acute response to CAR and PXR activators that is associated with induction of Insig-1, a protein with antilipogenic properties. We first observed that activation of CAR and PXR in mouse liver results in activation of Insig-1 along with reduced protein levels of the active form of sterol regulatory element binding protein 1 (Srebp-1). Studies in mice deficient in CAR and PXR revealed that the effect on triglycerides involves these two nuclear receptors. Finally, we identified a functional binding site for CAR and PXR in the Insig-1 gene by in vivo, in vitro, and in silico genomic analysis. Our experiments suggest that activation Insig-1 by drugs leads to reduced levels of active Srebp-1 and consequently to reduced target gene expression including the genes responsible for triglyceride synthesis. The reduction nuclear Srebp-1 by drugs is not observed when Insig-1 expression is repressed by small interfering RNA. In addition, observed that Insig-1 is also a target of AMP-activated kinase, the hepatic activity of which is increased by activators of CAR and PXR and is known to cause a reduction of triglycerides. The fact that drugs that serve as CAR or PXR ligands induce Insig-1 might have clinical consequences and explains alterations lipid levels after drug therapy.


The EMBO Journal | 1998

Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10

Yves Dubaquie; Renate Looser; Ursula Fünfschilling; Paul Jenö; Sabine Rospert

The mechanism of chaperonin‐assisted protein folding has been mostly analyzed in vitro using non‐homologous substrate proteins. In order to understand the relative importance of hsp60 and hsp10 in the living cell, homologous substrate proteins need to be identified and analyzed. We have devised a novel screen to test the folding of a large variety of homologous substrates in the mitochondrial matrix in the absence or presence of functional hsp60 or hsp10. The identified substrates have an Mr of 15–90 kDa and fall into three groups: (i) proteins that require both hsp60 and hsp10 for correct folding; (ii) proteins that completely fail to fold after inactivation of hsp60 but are unaffected by the inactivation of hsp10; and (iii) newly imported hsp60 itself, which is more severely affected by inactivation of hsp10 than by inactivation of pre‐existing hsp60. The majority of the identified substrates are group I proteins. For these, the lack of hsp60 function has a more pronounced effect than inactivation of hsp10. We suggest that homologous substrate proteins have differential chaperonin requirements, indicating that hsp60 and hsp10 do not always act as a single functional unit in vivo.


The EMBO Journal | 1996

Hsp60-independent protein folding in the matrix of yeast mitochondria.

Sabine Rospert; Renate Looser; Yves Dubaquie; Andreas Matouschek; Benjamin S. Glick; Gottfried Schatz

Proteins that are imported from the cytosol into mitochondria cross the mitochondrial membranes in an unfolded conformation and then fold in the matrix. Some of these proteins require the chaperonin hsp60 for folding. To test whether hsp60 is required for the folding of all imported matrix proteins, we monitored the folding of four monomeric proteins after import into mitochondria from wild‐type yeast or from a mutant strain in which hsp60 had been inactivated. The four precursors included two authentic matrix proteins (rhodanese and the mitochondrial cyclophilin Cpr3p) and two artificial precursors (matrix‐targeted variants of dihydrofolate reductase and barnase). Only rhodanese formed a tight complex with hsp60 and required hsp60 for folding. The three other proteins folded efficiently without, and showed no detectable binding to, hsp60. Thus, the mitochondrial chaperonin system is not essential for the folding of all matrix proteins. These data agree well with earlier in vitro studies, which had demonstrated that only a subset of proteins require chaperones for efficient folding.


Molecular Pharmacology | 2006

Stimulation of AMP-Activated Protein Kinase Is Essential for the Induction of Drug Metabolizing Enzymes by Phenobarbital in Human and Mouse Liver

Franck Rencurel; Marc Foretz; Deborah Stroka; Renate Looser; Isabelle Leclerc; Gabriela da Silva Xavier; Guy A. Rutter; Benoit Viollet; Urs Meyer

Our previous studies have suggested a role for AMP-activated protein kinase (AMPK) in the induction of CYP2B6 by phenobarbital (PB) in hepatoma-derived cells (Rencurel et al., 2005). In this study, we showed in primary human hepatocytes that: 1) 5′-phosphoribosyl-5-aminoimidazol-4-carboxamide 1-β-d-ribofuranoside and the biguanide metformin, known activators of AMPK, dose-dependently increase the expression of CYP2B6 and CYP3A4 to an extent similar to that of PB. 2) PB, but not the human nuclear receptor constitutive active/androstane receptor (CAR) ligand 6-(4-chlorophenyl)imidazol[2,1-6][1,3]thiazole-5-carbaldehyde, dose-dependently increase AMPK activity. 3) Pharmacological inhibition of AMPK activity with compound C or dominant-negative forms of AMPK blunt the inductive response to phenobarbital. Furthermore, in transgenic mice with a liver-specific deletion of both the α1 and α2 AMPK catalytic subunits, basal levels of Cyp2b10 and Cyp3a11 mRNA were increased but not in primary culture of mouse hepatocytes. However, phenobarbital or 1,4 bis[2-(3,5-dichloropyridyloxy)]benzene, a mouse CAR ligand, failed to induce the expression of these genes in the liver or cultured hepatocytes from mice lacking hepatic expression of the α1 and α2 subunits of AMPK. The distribution of CAR between the nucleus and cytosol was not altered in hepatocytes from mice lacking both AMPK catalytic subunits. These data highlight the essential role of AMPK in the CAR-mediated signal transduction pathway.


Journal of Biological Chemistry | 2002

Cholesterol and bile acids regulate xenosensor signaling in drug-mediated induction of cytochromes P450

Christoph Handschin; Michael Podvinec; Remo Amherd; Renate Looser; Jean-Claude Ourlin; Urs A. Meyer

Cytochromes P450 (CYP) constitute the major enzymatic system for metabolism of xenobiotics. Here we demonstrate that transcriptional activation of CYPs by the drug-sensing nuclear receptors pregnane X receptor, constitutive androstane receptor, and the chicken xenobiotic receptor (CXR) can be modulated by endogenous cholesterol and bile acids. Bile acids induce the chicken drug-activated CYP2H1 via CXR, whereas the hydroxylated metabolites of bile acids and oxysterols inhibit drug induction. The cholesterol-sensing liver X receptor competes with CXR, pregnane X receptor, or constitutive androstane receptor for regulation of drug-responsive enhancers from chicken CYP2H1, human CYP3A4, or human CYP2B6, respectively. Thus, not only cholesterol 7α-hydroxylase (CYP7A1), but also drug-inducible CYPs, are diametrically affected by these receptors. Our findings reveal new insights into the increasingly complex network of nuclear receptors regulating lipid homeostasis and drug metabolism.


Pharmacogenetics and Genomics | 2008

Sterol regulatory element binding protein 1 interacts with pregnane X receptor and constitutive androstane receptor and represses their target genes

Adrian Roth; Renate Looser; Urs Meyer

Objective Sterol regulatory element binding protein 1 (SREBP-1) is a lipogenic transcription factor of the basic helix-loop-helix family. SREBP-1 binds to sterol regulatory elements (SREs) in the promoter of lipogenic genes and induces fatty acid and triglyceride synthesis. Decreased drug clearance has been observed in obese and other dyslipidemic rodents as well as in diabetic, obese or overfed rodents. A hallmark of these conditions is increased expression of SREBP-1 in the liver. We therefore searched for a possible link between regulation of cytochromes P450 (CYPs) and SREBP-1. Methods We combined gene expression analysis, lipid analysis, effects of high levels of SREBP-1 in hepatocyte cultures to characterize the effects and protein interaction and chromatin immunoprecipitation assays to define the underlying mechanism. Finally, mice were fed a diet enriched in cholesterol to demonstrate the relevance of our data in vivo. By analyzing gene expression and lipids in cholesterol-fed mice or transfection of recombinant SREBP-1 in hepatocyte cultures the effect on CYPs was characterized. By use of protein interaction assays and chromatin immunoprecipitation the underlying mechanism was defined. Results We observed that SREBP-1 represses drug-mediated induction of hepatic CYPs, mainly members of the 2B and the 3A subfamilies. These drugs induce transcription of CYPs and other drug metabolizing enzymes via activation of the nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Here we report that the activation of SREBP-1 by insulin or cholesterol in mouse liver and primary human hepatocytes inhibits the transcriptional effects in PXR and CAR. Our results suggest that SREBP-1 functions as a non-DNA binding inhibitor and blocks the interaction of PXR and CAR with cofactors such as steroid receptor coactivator 1. Consequently, mRNA induction of CYPs by drugs and other xenochemicals is impaired. Conclusion We conclude that PXR and CAR respond to lipid accumulation by direct interaction with SREBP-1 and show that drug metabolism and lipid metabolism are interconnected within a complex network of transcriptional regulators.


Nuclear Receptor | 2004

The evolution of drug-activated nuclear receptors: one ancestral gene diverged into two xenosensor genes in mammals

Christoph Handschin; Sharon Blättler; Adrian Roth; Renate Looser; Mikael Oscarson; Michael Podvinec; Carmela Gnerre; Urs A. Meyer

BackgroundDrugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals. In non-mammalian species, only one xenosensor gene has been found. Using chicken as a model organism, the aim of our study was to elucidate whether non-mammalian species only have one or two xenosensors like mammals.ResultsTo explore the evolutionary aspect of this divergence, we tried to identify additional xenobiotic sensing nuclear receptors in chicken using various experimental approaches. However, none of those revealed novel candidates. Ablation of chicken xenobiotic receptor (CXR) function by RNAi or dominant-negative alleles drastically reduced drug-induction in a chicken hepatoma cell line. Subsequently, we functionally and structurally characterized CXR and compared our results to PXR and CAR. Despite the high similarity in their amino acid sequence, PXR and CAR have very distinct modes of activation. Some aspects of CXR function, e.g. direct ligand activation and high promiscuity are very reminiscent of PXR. On the other hand, cellular localization studies revealed common characteristics of CXR and CAR in terms of cytoplasmic-nuclear distribution. Finally, CXR has unique properties regarding its regulation in comparison to PXR and CAR.ConclusionOur finding thus strongly suggest that CXR constitutes an ancestral gene which has evolved into PXR and CAR in mammals. Future studies should elucidate the reason for this divergence in mammalian versus non-mammalian species.

Collaboration


Dive into the Renate Looser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge