Renato Assis de Carvalho
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renato Assis de Carvalho.
Insect Molecular Biology | 2011
Chris Bass; Renato Assis de Carvalho; Linda Oliphant; Alin M. Puinean; Linda M. Field; Ralf Nauen; Martin S. Williamson; Graham D Moores; Kevin Gorman
The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7‐ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real‐time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40‐fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid.
BMC Genomics | 2010
Renato Assis de Carvalho; Ana Maria Lima de Azeredo-Espin; Tatiana Teixeira Torres
BackgroundThe New World screw-worm (NWS), Cochliomyia hominivorax, is one of the most important myiasis-causing flies, causing severe losses to the livestock industry. In its current geographical distribution, this species has been controlled by the application of insecticides, mainly organophosphate (OP) compounds, but a number of lineages have been identified that are resistant to such chemicals. Despite its economic importance, only limited genetic information is available for the NWS. Here, as a part of an effort to characterize the C. hominivorax genome and identify putative genes involved in insecticide resistance, we sampled its transcriptome by deep sequencing of polyadenylated transcripts using the 454 sequencing technology.ResultsDeep sequencing on the 454 platform of three normalized libraries (larval, adult male and adult female) generated a total of 548,940 reads. Eighteen candidate genes coding for three metabolic detoxification enzyme families, cytochrome P450 monooxygenases, glutathione S-transferases and carboxyl/cholinesterases were selected and gene expression levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Of the investigated candidates, only one gene was expressed differently between control and resistant larvae with, at least, a 10-fold down-regulation in the resistant larvae. The presence of mutations in the acetylcholinesterase (target site) and carboxylesterase E3 genes was investigated and all of the resistant flies presented E3 mutations previously associated with insecticide resistance.ConclusionsHere, we provided the largest database of NWS expressed sequence tags that is an important resource, not only for further studies on the molecular basis of the OP resistance in NWS fly, but also for functional and comparative studies among Calliphoridae flies. Among our candidates, only one gene was found differentially expressed in resistant individuals, and its role on insecticide resistance should be further investigated. Furthermore, the absence of mutations in the OP target site and the high frequency of mutant carboxylesterase E3 indicate that metabolic resistance mechanisms have evolved predominantly in this species.
Medical and Veterinary Entomology | 2009
Renato Assis de Carvalho; Tatiana Teixeira Torres; M. G. Paniago; Ana Maria Lima de Azeredo-Espin
Abstract The New World screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), is one of the most important myiasis‐causing flies in South America. It is responsible for severe economic losses to livestock producers, mainly because it causes mortality in newborn calves and reductions in the quality of leather and in the production of milk and meat. The economic losses caused by myiasis, along with those caused by other internal and external parasites, are the main factors limiting meat production. In Brazil, C. hominivorax has been controlled by applying insecticides, particularly organophosphate (OP)‐based compounds. However, the improper and continuous use of these chemicals can lead to the selection of OP‐resistant strains. This, associated with the fast development of OP resistance in other myiasis‐causing flies, shows the importance of investigating resistance in C. hominivorax. Based on the findings of previous studies, the objective of the current work was to isolate and sequence the E3 gene in C. hominivorax. Mutations at the positions (Gly137 and Trp251) responsible for conferring OP resistance in Lucilia cuprina and Musca domestica L. (Muscidae) were identified in C. hominivorax. In addition, the orthologous region in C. hominivorax contained motifs that are highly conserved among carboxyl/cholinesterases and contribute to the catalytic mechanism of the active site. The characterization of this gene in natural populations of New World screwworm can be an important tool for monitoring resistance to insecticides throughout its current geographic distribution. This will provide information for the selection and implementation of more effective pest management programmes.
Veterinary Parasitology | 2010
Renato Assis de Carvalho; Cintia Elizabeth Gomez Limia; Chris Bass; Ana Maria Lima de Azeredo-Espin
The New World Screwworm (NWS) fly Cochliomyia hominivorax is one of most important myiasis-causing flies in the Neotropics. It is responsible for severe losses to the livestock industry through both mortality and the loss of productivity of infested animals. In Uruguay, NWS represents a significant problem. To date this pest has been controlled by the application of chemical insecticides, mainly the pyrethroid and organophosphate (OP) classes. However, the intensive use of these compounds over many years has led to the evolution of resistance which has the potential to compromise the effectiveness of current control strategies. One mechanism by which resistance has occurred in this and related dipteran species is through two mutations (G137D and W251S) in the carboxylesterase E3 enzyme that have enhanced ability to hydrolyze certain insecticides. In this study changes in the frequency of these mutations in C. hominivorax was investigated in three different Uruguayan regions in 2003 and 2009. All three regions analyzed showed a reduction in the frequency of the G137D mutation and a significant increase in frequency of the W251S mutation, and this may be related to the current intense use of dimethyl-OP and pyrethroid insecticides. The findings of this study provide current information on the frequency of these resistance-associated mutations in NWS in Uruguay and may help select appropriate chemicals for NWS control as part of potential pest management strategies.
PLOS ONE | 2016
Patrick M Dourado; Fabiana B. Bacalhau; Douglas Amado; Renato Assis de Carvalho; Samuel Martinelli; Graham P. Head; Celso Omoto
The Old World bollworm, Helicoverpa armigera (Hübner), was recently introduced into Brazil, where it has caused extensive damage to cotton and soybean crops. MON 87701 × MON 89788 soybean, which expresses the Bt protein Cry1Ac, was recently deployed in Brazil, providing high levels of control against H. armigera. To assess the risk of resistance to the Cry1Ac protein expressed by MON 87701 × MON 89788 soybean in Brazil, we conducted studies to evaluate the baseline susceptibility of H. armigera to Cry1Ac, in planta efficacy including the assessment of the high-dose criterion, and the initial resistance allele frequency based on an F2 screen. The mean Cry1Ac lethal concentration (LC50) ranged from 0.11 to 1.82 μg·mL−1 of diet among all H. armigera field populations collected from crop seasons 2013/14 to 2014/15, which indicated about 16.5-fold variation. MON 87701 × MON 89788 soybean exhibited a high level of efficacy against H. armigera and most likely met the high dose criterion against this target species in leaf tissue dilution bioassays up to 50 times. A total of 212 F2 family lines of H. armigera were established from field collections sampled from seven locations across Brazil and were screened for the presence of MON 87701 × MON 89788 soybean resistance alleles. None of the 212 families survived on MON 87701 × MON 89788 soybean leaf tissue (estimated allele frequency = 0.0011). The responses of H. armigera to Cry1Ac protein, high susceptibility to MON 87701 × MON 89788 soybean, and low frequency of resistance alleles across the main soybean-producing regions support the assumptions of a high-dose/refuge strategy. However, maintenance of reasonable compliance with the refuge recommendation will be essential to delay the evolution of resistance in H. armigera to MON 87701 × MON 89788 soybean in Brazil.
Veterinary Parasitology | 2011
Norma Machado da Silva; Renato Assis de Carvalho; Ana Maria Lima de Azeredo-Espin
Altered acetylcholinesterase (AChE) has been identified in numerous arthropod species resistant to organophosphate (OP) and carbamate insecticides. The New World screwworm (NWS) Cochliomyia hominivorax (Coquerel), one of the most important myiasis-causing flies in the Neotropics, has been controlled mainly by the application of OP insecticides in its current geographical distribution. However, few studies have investigated insecticide resistance in this species. Based on previous studies about mutations conferring OP resistance in related dipteran species, AChE cDNA was sequenced allowing a survey for mutations (I298V, G401A, F466Y) in NWS populations. In addition, the G137D mutation in the carboxylesterase E3 gene, also associated with OP resistance, was analyzed in the same NWS populations. Only 2/135 individuals presented an altered AChE gene (F466Y). In contrast, a high frequency of the G137D mutation in the E3 gene was found in some localities of Brazil and Uruguay, while the mutant allele was not found in Cuba, Venezuela or Colombia. These findings suggest that the alteration in the carboxylesterase E3 gene may be one of the main resistance mechanisms selected in this ectoparasite. The knowledge of the frequency of these resistance-associated mutations in the NWS natural populations may contribute to the selection of appropriate chemicals for control as part of pest management strategies.
PLOS ONE | 2018
Karina L. Silva-Brandão; Aline Peruchi; Noemy Seraphim; Natália Faraj Murad; Renato Assis de Carvalho; Juliano Ricardo Farias; Celso Omoto; Fernando L. Cônsoli; Antonio Figueira; Marcelo M. Brandão
We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.
Veterinary Parasitology | 2006
Renato Assis de Carvalho; Tatiana Teixeira Torres; Ana Maria Lima de Azeredo-Espin
Pesticide Biochemistry and Physiology | 2012
Renato Assis de Carvalho; Yihua Yang; Linda M. Field; Kevin Gorman; Graham D. Moores; Martin S. Williamson; Chris Bass
Invertebrate Neuroscience | 2014
Alberto Moura Mendes Lopes; Renato Assis de Carvalho; Ana Maria Lima de Azeredo-Espin