Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renato Fraga Righetti is active.

Publication


Featured researches published by Renato Fraga Righetti.


Respiratory Physiology & Neurobiology | 2014

Effects of Rho-kinase inhibition in lung tissue with chronic inflammation

Renato Fraga Righetti; Patricia Angeli da Silva Pigati; Samantha Souza Possa; Fábio Cetinic Habrum; Debora G. Xisto; Mariana A. Antunes; Edna A. Leick; Carla M. Prado; Milton A. Martins; Patricia Rieken Macedo Rocco; Iolanda de Fátima Lopes Calvo Tibério

We evaluated whether Rho-kinase inhibition (Y-27632) modulated distal lung responsiveness, inflammation, extracellular matrix remodeling and oxidative stress activation in guinea pigs (GPs) with chronic allergic inflammation. GPs were submitted to inhalation of ovalbumin (OVA-2×/week/4 weeks). From the 5th inhalation on, the Rho-kinase inhibitor group animals were submitted to Y-27632 inhalation 10min before each inhalation of OVA. Seventy-two hours after the seventh inhalation, the oscillatory mechanics of the distal lung strips were assessed under the baseline condition and after the ovalbumin challenge. Subsequently, the lung slices were submitted to morphometry. Rho-kinase inhibition in the ovalbumin-exposed animals attenuated distal lung elastance and resistance, eosinophils, IL-2, IL-4, IL-5, IL-13, TIMP-1, MMP-9, TGF-β, IFN-γ, NF-κB and iNOS-positive cells and the volume fraction of 8-iso-PGF2α, elastic, collagen and actin in alveolar walls compared with the OVA group (P<0.05). Rho-kinase inhibition contributed to the control of distal lung responsiveness, eosinophilic and Th1/Th2 responses and extracellular matrix remodeling in an animal model of chronic allergic inflammation.


BMC Pulmonary Medicine | 2013

Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model

Luciana Aristoteles; Renato Fraga Righetti; Nathalia Pinheiro; Rosana B Franco; Claudia M. Starling; Julie Cp da Silva; Patricia Angeli da Silva Pigati; Luciana C. Caperuto; Carla M. Prado; Marisa Dolhnikoff; Milton A. Martins; Edna A. Leick; Iolanda Flc Tibério

BackgroundThe importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs.MethodsGuinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies.ResultsOvalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001).ConclusionsIn this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.


Mediators of Inflammation | 2016

The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice

Bruno Tadeu Martins-Olivera; Rafael Almeida-Reis; Osmar A. Theodoro-Junior; Leandro V. Oliva; Natalia Neto dos Santos Nunes; Clarice Rosa Olivo; Marlon V. Brito; Carla M. Prado; Edna A. Leick; Milton A. Martins; Maria Luiza Vilela Oliva; Renato Fraga Righetti; Iolanda de Fátima Lopes Calvo Tibério

Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.


Mediators of Inflammation | 2016

Evidences of Herbal Medicine-Derived Natural Products Effects in Inflammatory Lung Diseases.

Fernanda Paula Roncon Santana; Nathalia Pinheiro; Marcia Mernak; Renato Fraga Righetti; Milton A. Martins; João Henrique G. Lago; Fernanda D.T.Q.S. Lopes; Iolanda de Fátima Lopes Calvo Tibério; Carla M. Prado

Pulmonary inflammation is a hallmark of many respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory syndrome distress (ARDS). Most of these diseases are treated with anti-inflammatory therapy in order to prevent or to reduce the pulmonary inflammation. Herbal medicine-derived natural products have been used in folk medicine and scientific studies to evaluate the value of these compounds have grown in recent years. Many substances derived from plants have the biological effects in vitro and in vivo, such as flavonoids, alkaloids, and terpenoids. Among the biological activities of natural products derived from plants can be pointed out the anti-inflammatory, antiviral, antiplatelet, antitumor anti-allergic activities, and antioxidant. Although many reports have evaluated the effects of these compounds in experimental models, studies evaluating clinical trials are scarce in the literature. This review aims to emphasize the effects of these different natural products in pulmonary diseases in experimental models and in humans and pointing out some possible mechanisms of action.


Journal of Allergy and Therapy | 2014

New Pharmacological Targets for Asthma Drug Development

Carla M. Prado; Renato Fraga Righetti; Patricia Angeli da Silva Pigati; Samantha Souza Possa; Anelize Sartori Alves dos Santos; Nathalia Pinheiro; Aless; ra Choqueta de Toledo; Edna A. Leick; Milton A. Martins; Iol; a de Fátima Lopes Calvo Tibério

Asthma is an inflammatory disorder characterized by airway hyperresponsiveness, followed by inflammation, remodeling and oxidative stress in the respiratory system and lung tissue. While glucocorticosteroids remain the gold-standard of asthma therapy, they have limitations because of their potentially severe adverse effects and the presence of corticosteroid resistance in some patients. In the present review we will focus in four main groups of experimental pharmacological approaches for future asthma and hyperresponsiveness treatment: proteinase inhibitors and flavonoids, arginase and iNOS inhibition, Rho-kinase inhibitors, cholinergic anti-inflammatory system and nicotinic receptors.


Frontiers in Immunology | 2018

Effects of Anti-IL-17 on Inflammation, Remodeling, and Oxidative Stress in an Experimental Model of Asthma Exacerbated by LPS

Leandro do Nascimento Camargo; Renato Fraga Righetti; Luciana Ritha de Cássia Rolim Barbosa Aristóteles; Tabata Maruyama dos Santos; Flávia Castro Ribas de Souza; Silvia Fukuzaki; Maysa Mariana Cruz; Maria Isabel C. Alonso-Vale; Beatriz Mangueira Saraiva-Romanholo; Carla M. Prado; Milton A. Martins; Edna A. Leick; Iolanda de Fátima Lopes Calvo Tibério

Inflammation plays a central role in the development of asthma, which is considered an allergic disease with a classic Th2 inflammatory profile. However, cytokine IL-17 has been examined to better understand the pathophysiology of this disease. Severe asthmatic patients experience frequent exacerbations, leading to infection, and subsequently show altered levels of inflammation that are unlikely to be due to the Th2 immune response alone. This study estimates the effects of anti-IL-17 therapy in the pulmonary parenchyma in a murine asthma model exacerbated by LPS. BALB/c mice were sensitized with intraperitoneal ovalbumin and repeatedly exposed to inhalation with ovalbumin, followed by treatment with or without anti-IL-17. Twenty-four hours prior to the end of the 29-day experimental protocol, the two groups received LPS (0.1 mg/ml intratracheal OVA-LPS and OVA-LPS IL-17). We subsequently evaluated bronchoalveolar lavage fluid, performed a lung tissue morphometric analysis, and measured IL-6 gene expression. OVA-LPS-treated animals treated with anti-IL-17 showed decreased pulmonary inflammation, edema, oxidative stress, and extracellular matrix remodeling compared to the non-treated OVA and OVA-LPS groups (p < 0.05). The anti-IL-17 treatment also decreased the numbers of dendritic cells, FOXP3, NF-κB, and Rho kinase 1- and 2-positive cells compared to the non-treated OVA and OVA-LPS groups (p < 0.05). In conclusion, these data suggest that inhibition of IL-17 is a promising therapeutic avenue, even in exacerbated asthmatic patients, and significantly contributes to the control of Th1/Th2/Th17 inflammation, chemokine expression, extracellular matrix remodeling, and oxidative stress in a murine experimental asthma model exacerbated by LPS.


Acta Histochemica | 2016

Sakuranetin reverses vascular peribronchial and lung parenchyma remodeling in a murine model of chronic allergic pulmonary inflammation.

Camila Sakoda; Alessandra Choqueta de Toledo; Adenir Perini; Nathalia Pinheiro; Meire Ioshie Hiyane; Simone S. Grecco; Iolanda de Fátima Lopes Calvo Tibério; Niels Olsen Saraiva Câmara; Milton A. Martins; João Henrique G. Lago; Renato Fraga Righetti; Carla M. Prado

BACKGROUND AND PURPOSE Asthma is a disease of high prevalence and morbidity that generates high costs in hospitalization and treatment. Although the airway is involved in the physiopathology of asthma, there is also evidence of the importance of vascular and lung parenchyma inflammation and remodeling, which can contribute to the functional pulmonary alterations observed in asthmatic patients. Our aim was to evaluate treatment using sakuranetin, a flavone isolated from the twigs of Baccharis retusa (Asteraceae), on vascular and lung parenchyma alterations in an experimental murine model of asthma. METHODS Male BALB/c mice were subjected to a sensitization protocol with ovalbumin for 30days and were treated with or without sakuranetin (20mg/kg/mice) or dexamethasone (5mg/kg/mice); then, the lungs were collected for histopathological analysis. We evaluated extracellular matrix remodeling (collagen and elastic fibers), inflammation (eosinophils and NF-kB) and oxidative stress (8-isoprostane) in the pulmonary vessels and lung parenchyma. The thickness of the vascular wall was quantified, as well as the vascular endothelial growth factor (VEGF) levels. RESULTS We demonstrated that sakuranetin reduced the number of eosinophils and elastic fibers in both the pulmonary vessels and the lung parenchyma, probably due to a reduction of oxidative stress and of the transcription factor NF-kB and VEGF levels in the lung. In addition, it reduced the thickness of the pulmonary vascular wall. The treatment had no effect on the collagen fibers. In most of the parameters, the effect of sakuranetin was similar to the dexamethasone effect. CONCLUSIONS AND IMPLICATIONS Sakuranetin had anti-inflammatory and antioxidant effects, preventing vascular and distal parenchyma changes in this experimental model of asthma.


Journal of Allergy and Therapy | 2014

Influence of Oral Tolerance on Lung Cytokines Expression and Oxidative Stress Activation in Guinea Pigs with Chronic Inflammation

Samantha Souza Possa; Renato Fraga Righetti; Viviane Christina Ruiz-Schütz; Adriane S. Nakashima; Carla M. Prado; Aparecida Leick; Milton A. Martins; Fátima Lopes; Calvo Tibério

Objective: We had previously demonstrated that oral induced tolerance attenuates lung tissue hyperresponsiveness, eosinophil inflammation and extracellular matrix remodelling in a model of chronic inflammation in guinea pigs. In the present study, we evaluated if these responses were associated to alterations on Th1/Th2 cell expression on airways and distal lung. Methods: Animals received seven inhalations of ovalbumin (1-5 mg/mL; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). After the last inhalation, lungs were removed for the histological analysis using morphometry. We assessed IL-2, IL-4, IL-13, IFN-γ and iNOS both in airways and distal lung. Results: There was an increase in IL-2, IL-4, IL-13, IFN-γ and iNOS positive cells both in airways and alveolar septa in ovalbumin-exposed guinea pigs compared with controls (P<0.05). Both in airways and in lung tissue there was a decrease in IL-4, IL-13 and iNOS positive cells in OT1 and OT2 compared to OVA (P<0.05). Considering IL-2 expression, there was an increase in OT1 and OT2 compared to OVA (P<0.05). We observed positive correlations among the functional responses and some inflammation and oxidative stress pathway activation markers evaluated, especially in alveolar wall. Conclusion: Oral tolerance induces a shift in Th1/Th2 and influences oxidative stress activation both in airways and distal lung of animals with chronic pulmonary allergic inflammation. These results may clarify the mechanisms involved in the attenuation of mechanical responsiveness, inflammation and remodelling of airways and distal lung by oral tolerance, as previously shown in this animal model.


International Journal of Molecular Sciences | 2017

A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice

Osmar A. Theodoro-Junior; Renato Fraga Righetti; Rafael Almeida-Reis; Bruno T. Martins-Oliveira; Leandro V. Oliva; Carla M. Prado; Beatriz Mangueira Saraiva-Romanholo; Edna A. Leick; Nathalia Pinheiro; Yara Lobo; Milton A. Martins; Maria Luiza Vilela Oliva; Iolanda de Fátima Lopes Calvo Tibério

Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.


Scientific Reports | 2018

Low dose of chlorine exposure exacerbates nasal and pulmonary allergic inflammation in mice

Isabella Santos de Genaro; Francine Maria de Almeida; Deborah Camargo Hizume-Kunzler; Henrique T. Moriya; Ronaldo Aparecido da Silva; João Carlos Gonçalves Cruz; Renan Boeira Lopes; Renato Fraga Righetti; Rodolfo de Paula Vieira; M. Saiki; Milton A. Martins; Iolanda de Fátima Lopes Calvo Tibério; Fernanda M. Arantes-Costa; Beatriz Mangueira Saraiva-Romanholo

Work-exacerbated asthma (WEA) is defined as preexisting asthma that worsens with exposure to irritants [e.g., chlorine (Cl2) derivatives] in the workplace. The maximum allowable concentration in the workplace of Cl2 exposure is 3 mg/ m3 (described in OSHA). We investigated in an experimental asthma model in mice the effects of a single exposure to a sodium hypochlorite dose with this allowed chlorine concentration and a tenfold higher dose. Acute chlorine exposure at 3.3 mg/m3 in the OVA-sensitized group increased eosinophils in the peribronquial infiltrate, cytokine production, nasal mucus production and the number of iNOS positive cells in the distal lung compared to only sensitized mice. The exposure to a higher dose of 33.3 mg/m3 in the OVA-sensitized group resulted in an increase in respiratory system elastance, in the total and differential numbers of inflammatory cells in bronchoalveolar lavage fluid, IL-4, IL-5, and IL-17 in the lungs, eosinophils in peribronquial infiltrate and mucus content in nasal compared to non-exposed and sensitized animals. In this asthma model, chorine exposures at an allowable dose, contributed to the potentiation of Th2 responses. The functional alterations were associated with increased iNOS and ROCK-2 activation in the distal lung.

Collaboration


Dive into the Renato Fraga Righetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla M. Prado

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Edna A. Leick

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debora G. Xisto

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge