Renato Heidor
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renato Heidor.
Brazilian Journal of Medical and Biological Research | 2011
Alessandra Vieira; Renato Heidor; Mônica Testoni Cardozo; Clarissa Scolastici; Eduardo Purgatto; T.M. Shiga; L.F. Barbisan; Thomas Prates Ong; Fernando Salvador Moreno
β-ionone (βI), a cyclic isoprenoid, and geraniol (GO), an acyclic monoterpene, represent a promising class of dietary chemopreventive agents against cancer, whose combination could result in synergistic anticarcinogenic effects. The chemopreventive activities of βI and GO were evaluated individually or in combination during colon carcinogenesis induced by dimethylhydrazine in 48 3-week-old male Wistar rats (12 per group) weighing 40-50 g. Animals were treated for 9 consecutive weeks with βI (16 mg/100 g body weight), GO (25 mg/100 g body weight), βI combined with GO or corn oil (control). Number of total aberrant crypt foci (ACF) and of ACF ≥4 crypts in the distal colon was significantly lower in the GO group (66 ± 13 and 9 ± 2, respectively) compared to control (102 ± 9 and 17 ± 3) and without differences in the βI (91 ± 11 and 14 ± 3) and βI+GO groups (96 ± 5 and 19 ± 2). Apoptosis level, identified by classical apoptosis morphological criteria, in the distal colon was significantly higher in the GO group (1.64 ± 0.06 apoptotic cells/mm²) compared to control (0.91 ± 0.07 apoptotic cells/mm²). The GO group presented a 0.7-fold reduction in Bcl-2 protein expression (Western blot) compared to control. Colonic mucosa concentrations of βI and GO (gas chromatography/mass spectrometry) were higher in the βI and GO groups, respectively, compared to the control and βI+GO groups. Therefore, GO, but not βI, represents a potential chemopreventive agent in colon carcinogenesis. Surprisingly, the combination of isoprenoids does not represent an efficient chemopreventive strategy.
Current Drug Targets | 2012
Renato Heidor; Juliana Festa Ortega; Aline de Conti; Thomas Prates Ong; Fernando Salvador Moreno
Bioactive food compounds (BFCs) exhibit potential anticarcinogenic effects that deserve to be explored. Butyric acid (BA) is considered a promising BFC and has been used in clinical trials; however, its short half-life considerably restricts its therapeutic application. Tributyrin (TB), a BA prodrug present in milk fat and honey, has more favorable pharmacokinetic properties than BA, and its oral administration is also better tolerated. In vitro and in vivo studies have shown that TB acts on multiple anticancer cellular and molecular targets without affecting non-cancerous cells. Among the TB mechanisms of action, the induction of apoptosis and cell differentiation and the modulation of epigenetic mechanisms are notable. Due to its anticarcinogenic potential, strategies as lipid emulsions, nanoparticles, or structured lipids containing TB are currently being developed to improve its organoleptic characteristics and bioavailability. In addition, TB has minimal toxicity, making it an excellent candidate for combination therapy with other agents for the control of cancer. Despite the lack of data available in the literature, TB is a promising molecule for anticancer strategies. Therefore, additional preclinical and clinical studies should be performed using TB to elucidate its molecular targets and anticarcinogenic potential.
Nutrition and Cancer | 2016
Fernando Salvador Moreno; Renato Heidor; Igor P. Pogribny
ABSTRACT Hepatocellular carcinoma (HCC) is an aggressive and life-threatening disease often diagnosed at intermediate or advanced stages, which substantially limits therapeutic approaches to its successful treatment. This indicates that the prevention of HCC may be the most promising strategy in reducing its incidence and mortality. Emerging evidence indicates that numerous nutrients and nonnutrient dietary bioactive components can reduce the occurrence and/or delay the development of HCC through modifications of deregulated epigenetic mechanisms. This review examines the existing knowledge on the epigenetic mechanism-based studies in in vitro and in vivo models of HCC on the chemopreventive potential of epigenetic food components, including dietary methyl-group donors, epigallocatechin-3-gallate, sodium butyrate, resveratrol, curcumin, and sulforaphane, on liver carcinogenesis. Future direction and potential challenges in the effective use of bioactive food constituents in the prevention of HCC are highlighted and discussed.
Toxicology and Applied Pharmacology | 2014
Renato Heidor; Kelly S. Furtado; Juliana Festa Ortega; Tiago Franco de Oliveira; Paulo Eduardo Latorre Martins Tavares; Alessandra Vieira; Mayara Lilian Paulino Miranda; Eduardo Purgatto; Fernando Salvador Moreno
The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200mg/100g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MD group), TB treatment reduced the total number of aberrant crypt foci (ACF; p<0.05) as well as the ACF with ≥4 crypts (p<0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p<0.05) and reduced DNA damage (p<0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p<0.05). TB administration resulted in increased colonic tissue concentrations of BA (p<0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB.
Nutrition and Cancer | 2014
Clarissa Scolastici; Aline de Conti; Mônica Testoni Cardozo; Thomas Prates Ong; Eduardo Purgatto; Maria Aderuza Horst; Renato Heidor; Kelly S. Furtado; Bruna Kempfer Bassoli; Fernando Salvador Moreno
Dietary isoprenic derivatives such as β-ionone (βI) are a promising class of chemopreventive agents. In this study, cellular aspects of βI protective activities during early hepatocarcinogenesis were evaluated. Male Wistar rats were submitted to “resistant hepatocyte” model and then received daily 16 mg/100 g body weight (b.w.) of βI (βI group) or only 0.25 mL/100 g b.w. of corn oil (vehicle, control group [CO]) during 4 wk, specifically during early promotion phase. Compared to controls, βI inhibited (P < 0.05) the development of persistent preneoplastic lesions (pPNL), considered to be potential hepatocellular carcinoma (HCC) progression sites, and increased remodeling PNL (rPNL) (P < 0.05) that tend to regress to a normal phenotype. Increased βI hepatic levels (P < 0.05), in the βI group, were associated with its chemopreventive actions. Compared to control rats, βI reduced the frequency of both pPNL and rPNL positive for tumor growth factor (TGF)-α (P < 0.05), reduced the frequency of pPNL stained for p65 (nuclear factor-kappaB; NF-κB) (P < 0.05), and reduced the frequency of pPNL positive for cytoplasmic p53 (P < 0.05). Our data demonstrated that βI targets TGF-α, NF-κB, and p53 in initial phases of hepatocarcinogenesis and specifically inhibits PNL with increased probability to progress to HCC. This isoprenoid may represent a chemopreventive agent of choice for HCC control.
Oncotarget | 2016
Juliana Festa Ortega; Aline de Conti; Volodymyr Tryndyak; Kelly S. Furtado; Renato Heidor; Maria Aderuza Horst; Laura Helena Gasparini Fernandes; Paulo Eduardo Latorre Martins Tavares; Marta Pogribna; Svitlana Shpyleva; Frederick A. Beland; Igor P. Pogribny; Fernando Salvador Moreno
Hepatocellular carcinoma (HCC), an aggressive and the fastest growing life-threatening cancer worldwide, is often diagnosed at intermediate or advanced stages of the disease, which substantially limits therapeutic approaches for its successful treatment. This indicates that the prevention of hepatocarcinogenesis is probably the most promising approach to reduce both the HCC incidence and cancer-related mortality. In previous studies, we demonstrated a potent chemopreventive effect of tributyrin, a butyric acid prodrug, on experimental hepatocarcinogenesis. The cancer-inhibitory effect of tributyrin was linked to the suppression of sustained cell proliferation and induction of apoptotic cell death driven by an activation of the p53 apoptotic signaling pathway. The goal of the present study was to investigate the underlying molecular mechanisms linked to tributyrin-mediated p53 activation. Using in vivo and in vitro models of liver cancer, we demonstrate that an increase in the level of p53 protein in nuclei, a decrease in the level of cytoplasmic p53, and, consequently, an increase in the ratio of nuclear/cytoplasmic p53 in rat preneoplastic livers and in rat and human HCC cell lines caused by tributyrin or sodium butyrate treatments was associated with a marked increase in the level of nuclear chromosome region maintenance 1 (CRM1) protein. Mechanistically, the increase in the level of nuclear p53 protein was associated with a substantially reduced binding interaction between CRM1 and p53. The results demonstrate that the cancer-inhibitory activity of sodium butyrate and its derivatives on liver carcinogenesis may be attributed to retention of p53 and CRM1 proteins in the nucleus, an event that may trigger activation of p53-mediated apoptotic cell death in neoplastic cells.
Carcinogenesis | 2006
Thomas Prates Ong; Renato Heidor; Aline de Conti; Maria Lúcia Zaidan Dagli; Fernando Salvador Moreno
Carcinogenesis | 2005
Roseli de Moura Espíndola; Rogério Pietro Mazzantini; Thomas Prates Ong; Aline de Conti; Renato Heidor; Fernando Salvador Moreno
Carcinogenesis | 2013
Aline de Conti; Volodymyr Tryndyak; Igor Koturbash; Renato Heidor; Joice Kuroiwa-Trzmielina; Thomas Prates Ong; Frederick A. Beland; Fernando Salvador Moreno; Igor P. Pogribny
Carcinogenesis | 2005
Elaine Maria de Almeida Vasconcelos Fonseca; Carlos Eduardo Andrade Chagas; Rogério Pietro Mazzantini; Renato Heidor; Thomas Prates Ong; Fernando Salvador Moreno