Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renato Sarc is active.

Publication


Featured researches published by Renato Sarc.


Waste Management | 2013

Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

Renato Sarc; Karl Lorber

This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper.


Waste Management & Research | 2014

Design, quality and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry

Renato Sarc; Karl Lorber; Roland Pomberger; Melanie Rogetzer; Ernst-Michael Sipple

This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe.


Waste Management & Research | 2012

Design and quality assurance for solid recovered fuel.

Karl Lorber; Renato Sarc; Alexia Aldrian

This contribution describes the processing and the quality assurance of solid recovered fuel (SRF) that is increasingly used in a wide range of co-incineration plants. As an example, the preparation of municipal, commercial and industrial wastes for recovering of two different specifications of waste fuels (i.e. primary burner fuel and hot disc fuel used in cement industry) is reported and the multiple stage processing scheme used in SRF production is presented as well as the quality of SRF obtained. It will be shown, that removing of metals and sorting out of unwanted inert materials like stones, glass and concrete only after disintegration of the waste matrix during several crushing and separation steps can be carried out efficiently. In the following chapters, the quality assurance of SRF is demonstrated and described by using two different scenarios (i.e. different sizes of waste streams with different particle sizes, delivered to a cement plant by walking floor trucks). Based on CEN/TS-guidelines for SRF as well as national norms (ÖNORM), two sampling procedures and sample preparation schemes are elaborated for the scenarios and own practical experiences in quality assessment of heterogeneous waste fuels are reported. Finally, references are given on new, innovative laboratory equipment like cutting mills with attached cyclones and a mobile, hand-sized XRF-instrument for fast identification of extraneous materials removed from the laboratory sample prior to chemical analysis.


Waste Management & Research | 2014

Landfill mining in Austria: Foundations for an integrated ecological and economic assessment

Robert Hermann; Rupert J. Baumgartner; Renato Sarc; Arne Ragossnig; Tanja Wolfsberger; Martin Eisenberger; Andreas Budischowsky; Roland Pomberger

For the first time, basic technical and economic studies for landfill mining are being carried out in Austria on the basis of a pilot project. An important goal of these studies is the collection of elementary data as the basis for an integrated ecological and economic assessment of landfill mining projects with regard to their feasibility. For this purpose, economic, ecological, technical, organizational, as well as political and legal influencing factors are identified and extensively studied in the article. An important aspect is the mutual influence of the factors on each other, as this can significantly affect the development of an integrated assessment system. In addition to the influencing factors, the definition of the spatial and temporal system boundaries is crucial for further investigations. Among others, the quality and quantity of recovered waste materials, temporal fluctuations or developments in prices of secondary raw material and fuels attainable in the markets, and time and duration of dumping, play a crucial role. Based on the investigations, the spatial system boundary is defined in as much as all the necessary process steps, from landfill mining, preparing and sorting to providing a marketable material/product by the landfill operator, are taken into account. No general accepted definition can be made for the temporal system boundary because the different time-related influencing factors necessitate an individual project-specific determination and adaptation to the facts of the on-site landfill mining project.


Waste Management & Research | 2015

Landfill mining: Resource potential of Austrian landfills – Evaluation and quality assessment of recovered municipal solid waste by chemical analyses

Tanja Wolfsberger; Alexia Aldrian; Renato Sarc; Robert Hermann; Daniel Höllen; Andreas Budischowsky; Andreas Zöscher; Arne Ragoßnig; Roland Pomberger

Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically–biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests.


Waste Management & Research | 2016

Landfill mining: Development of a cost simulation model.

Tanja Wolfsberger; Michael Pinkel; Stephanie Polansek; Renato Sarc; Robert Hermann; Roland Pomberger

Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill.


Waste Management & Research | 2015

Landfill mining: Development of a theoretical method for a preliminary estimate of the raw material potential of landfill sites.

Tanja Wolfsberger; Jörg Nispel; Renato Sarc; Alexia Aldrian; Robert Hermann; Daniel Höllen; Roland Pomberger; Andreas Budischowsky; Arne Ragossnig

In recent years, the rising need for raw materials by emerging economies (e.g. China) has led to a change in the availability of certain primary raw materials, such as ores or coal. The accompanying rising demand for secondary raw materials as possible substitutes for primary resources, the soaring prices and the global lack of specific (e.g. metallic) raw materials pique the interest of science and economy to consider landfills as possible secondary sources of raw materials. These sites often contain substantial amounts of materials that can be potentially utilised materially or energetically. To investigate the raw material potential of a landfill, boreholes and excavations, as well as subsequent hand sorting have proven quite successful. These procedures, however, are expensive and time consuming as they frequently require extensive construction measures on the landfill body or waste mass. For this reason, this article introduces a newly developed, affordable, theoretical method for the estimation of landfill contents. The article summarises the individual calculation steps of the method and demonstrates this using the example of a selected Austrian sanitary landfill. To assess the practicality and plausibility, the mathematically determined raw material potential is compared with the actual results from experimental studies of excavated waste from the same landfill (actual raw material potential).


Waste Management & Research | 2016

Landfill mining: Developing a comprehensive assessment method

Robert Hermann; Tanja Wolfsberger; Roland Pomberger; Renato Sarc

In Austria, the first basic technological and economic examinations of mass-waste landfills with the purpose to recover secondary raw materials have been carried out by the ‘LAMIS – Landfill Mining Österreich’ pilot project. A main focus of its research, and the subject of this article, is the first conceptual design of a comprehensive assessment method for landfill mining plans, including not only monetary factors (like costs and proceeds) but also non-monetary ones, such as the concerns of adjoining owners or the environmental impact. Detailed reviews of references, the identification of influences and system boundaries to be included in planning landfill mining, several expert workshops and talks with landfill operators have been performed followed by a division of the whole assessment method into preliminary and main assessment. Preliminary assessment is carried out with a questionnaire to rate juridical feasibility, the risk and the expenditure of a landfill mining project. The results of this questionnaire are compiled in a portfolio chart that is used to recommend, or not, further assessment. If a detailed main assessment is recommended, defined economic criteria are rated by net present value calculations, while ecological and socio-economic criteria are examined in a utility analysis and then transferred into a utility-net present value chart. If this chart does not support making a definite statement on the feasibility of the project, the results must be further examined in a cost-effectiveness analysis. Here, the benefit of the particular landfill mining project per capital unit (utility-net present value ratio) is determined to make a final distinct statement on the general benefit of a landfill mining project.


Archive | 2018

Energetic utilisation of high calorific residues from landfill mining

Renato Sarc; Roland Pomberger; Tanja Wolfsberger; Josef Adam


Archive | 2017

Innovative Technical Solutions for Reduction of Waste Fuel Specific Emissions in Cement Plant

Renato Sarc; Roland Pomberger; Karl Lorber

Collaboration


Dive into the Renato Sarc's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge