Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renato Tadeu Nachbar is active.

Publication


Featured researches published by Renato Tadeu Nachbar.


Nutrients | 2011

Regulation of Inflammation by Short Chain Fatty Acids

Marco Aurélio Ramirez Vinolo; Hosana G. Rodrigues; Renato Tadeu Nachbar; Rui Curi

The short chain fatty acids (SCFAs) acetate (C2), propionate (C3) and butyrate (C4) are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI) tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43) and inhibiton of histone deacetylase (HDAC). SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10), eicosanoids and chemokines (e.g., MCP-1 and CINC-2). The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells) and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.


Lipids in Health and Disease | 2012

Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function

Amanda R. Martins; Renato Tadeu Nachbar; Renata Gorjão; Marco Aurélio Ramirez Vinolo; William T. Festuccia; Rafael Herling Lambertucci; Maria Fernanda Cury-Boaventura; Leonardo R. Silveira; Rui Curi; Sandro M. Hirabara

Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.


BioMed Research International | 2012

Molecular Targets Related to Inflammation and Insulin Resistance and Potential Interventions

Sandro Massao Hirabara; Renata Gorjão; Marco Aurélio Ramirez Vinolo; Alice Cristina Rodrigues; Renato Tadeu Nachbar; Rui Curi

Inflammation and insulin resistance are common in several chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, and cardiovascular diseases. Various studies show a relationship between these two factors, although the mechanisms involved are not completely understood yet. Here, we discuss the molecular basis of insulin resistance and inflammation and the molecular aspects on inflammatory pathways interfering in insulin action. Moreover, we explore interventions based on molecular targets for preventing or treating correlated disorders, advances for a better characterization, and understanding of the mechanisms and mediators involved in the different inflammatory and insulin resistance conditions. Finally, we address biotechnological studies for the development of new potential therapies and interventions.


Stem Cell Reviews and Reports | 2012

Local Injections of Adipose-Derived Mesenchymal Stem Cells Modulate Inflammation and Increase Angiogenesis Ameliorating the Dystrophic Phenotype in Dystrophin-Deficient Skeletal Muscle

Carlos Hermano da Justa Pinheiro; Jean César Farias de Queiroz; Lucas Guimarães-Ferreira; Kaio Fernando Vitzel; Renato Tadeu Nachbar; Luís Gustavo Oliveira de Sousa; Alcione Lescano de Souza-Jr; Maria Tereza Nunes; Rui Curi

The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-α, IL-6 and oxidative stress measured by Amplex® reagent were observed. The level of TGF-β1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.


Journal of Investigative Dermatology | 2012

Oral Administration of Oleic or Linoleic Acid Accelerates the Inflammatory Phase of Wound Healing

Hosana G. Rodrigues; Marco Aurélio Ramirez Vinolo; Juliana Magdalon; Kaio Fernando Vitzel; Renato Tadeu Nachbar; Ana Flávia M. Pessoa; Marinilce Fagundes Santos; Elaine Hatanaka; Philip C. Calder; Rui Curi

The effects of oral ingestion of oleic (OLA) and linoleic (LNA) acids on wound healing in rats were investigated. LNA increased the influx of inflammatory cells, the concentration of hydrogen peroxide (H(2)O(2)) and cytokine-induced neutrophil chemoattractant-2αβ (CINC-2αβ), and the activation of the transcription factor activator protein-1 (AP-1) in the wound at 1  hour post wounding. LNA decreased the number of inflammatory cells and IL-1, IL-6, and macrophage inflammatory protein-3 (MIP-3) concentrations, as well as NF-κB activation in the wound at 24  hours post wounding. LNA accelerated wound closure over a period of 7 days. OLA increased TNF-α concentration and NF-κB activation at 1  hour post wounding. A reduction of IL-1, IL-6, and MIP-3α concentrations, as well as NF-κB activation, was observed 24  hours post wounding in the OLA group. These data suggest that OLA and LNA accelerate the inflammatory phase of wound healing, but that they achieve this through different mechanisms.


Endocrinology | 2014

The Acute Inhibitory Effect of Iodide Excess on Sodium/Iodide Symporter Expression and Activity Involves the PI3K/Akt Signaling Pathway

Caroline Serrano-Nascimento; Silvania da Silva Teixeira; Juan Pablo Nicola; Renato Tadeu Nachbar; Ana M. Masini-Repiso; Maria Tereza Nunes

Iodide (I(-)) is an irreplaceable constituent of thyroid hormones and an important regulator of thyroid function, because high concentrations of I(-) down-regulate sodium/iodide symporter (NIS) expression and function. In thyrocytes, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) cascade also inhibits NIS expression and function. Because I(-) excess and PI3K/Akt signaling pathway induce similar inhibitory effects on NIS expression, we aimed to study whether the PI3K/Akt cascade mediates the acute and rapid inhibitory effect of I(-) excess on NIS expression/activity. Here, we reported that the treatment of PCCl3 cells with I(-) excess increased Akt phosphorylation under normal or TSH/insulin-starving conditions. I(-) stimulated Akt phosphorylation in a PI3K-dependent manner, because the use of PI3K inhibitors (wortmannin or 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) abrogated the induction of I(-) effect. Moreover, I(-) inhibitory effect on NIS expression and function were abolished when the cells were previously treated with specific inhibitors of PI3K or Akt (Akt1/2 kinase inhibitor). Importantly, we also found that the effect of I(-) on NIS expression involved the generation of reactive oxygen species (ROS). Using the fluorogenic probes dihydroethidium and mitochondrial superoxide indicator (MitoSOX Red), we observed that I(-) excess increased ROS production in thyrocytes and determined that mitochondria were the source of anion superoxide. Furthermore, the ROS scavengers N-acetyl cysteine and 2-phenyl-1,2-benzisoselenazol-3-(2H)-one blocked the effect of I(-) on Akt phosphorylation. Overall, our data demonstrated the involvement of the PI3K/Akt signaling pathway as a novel mediator of the I(-)-induced thyroid autoregulation, linking the role of thyroid oxidative state to the Wolff-Chaikoff effect.


Free Radical Biology and Medicine | 2010

Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells

Carlos Hermano da Justa Pinheiro; Leonardo R. Silveira; Renato Tadeu Nachbar; Kaio Fernando Vitzel; Rui Curi

Contractile activity induces a marked increase in glycolytic activity and gene expression of enzymes and transporters involved in glucose metabolism in skeletal muscle. Muscle contraction also increases the production of reactive oxygen species (ROS). In this study, the effects of treatment with N-acetylcysteine (NAC), a potent antioxidant compound, on contraction-stimulated glycolysis were investigated in electrically stimulated primary rat skeletal muscle cells. The following parameters were measured: 2-[(3)H]deoxyglucose (2-DG) uptake; activities of hexokinase, phosphofructokinase (PFK), and glucose-6-phosphate dehydrogenase (G6PDH); lactate production; and expression of the glucose transporter 4 (GLUT4), hexokinase II (HKII), and PFK genes after one bout of electrical stimulation in primary rat myotubes. NAC treatment decreased ROS signal by 49% in resting muscle cells and abolished the muscle contraction-induced increase in ROS levels. In resting cells, NAC decreased mRNA and protein contents of GLUT4, mRNA content and activity of PFK, and lactate production. NAC treatment suppressed the contraction-mediated increase in 2-DG uptake; lactate production; hexokinase, PFK, and G6PDH activities; and gene expression of GLUT4, HKII, and PFK. Similar to muscle contraction, exogenous H(2)O(2) (500 nM) administration increased 2-DG uptake; lactate production; hexokinase, PFK, and G6PDH activities; and gene expression of GLUT4, HKII, and PFK. These findings support the proposition that ROS endogenously produced play an important role in the changes in glycolytic activity and gene expression of GLUT4, HKII, and PFK induced by contraction in skeletal muscle cells.


Cellular Physiology and Biochemistry | 2012

The effects of palmitic acid on nitric oxide production by rat skeletal muscle: mechanism via superoxide and iNOS activation.

Rafael Herling Lambertucci; Carol Góis Leandro; Marco Aurélio Ramirez Vinolo; Renato Tadeu Nachbar; Leonardo R. Silveira; Sandro Massao Hirabara; Rui Curi; Tania Cristina Pithon-Curi

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-ĸB) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-ĸB activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content.


FEBS Open Bio | 2014

DHEA supplementation in ovariectomized rats reduces impaired glucose‐stimulated insulin secretion induced by a high‐fat diet

Katherine Veras; Felipe Natali Almeida; Renato Tadeu Nachbar; Daniel S. Jesus; Joao Paulo Camporez; Ângelo Rafael Carpinelli; Julia H. Goedecke; Carla Roberta de Oliveira Carvalho

Dehydroepiandrosterone (DHEA) and the dehydroepiandrosterone sulfate (DHEA‐S) are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post‐menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX) female rats fed a high‐fat diet would maintain glucose‐induced insulin secretion (GSIS) and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short‐term high‐fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet‐induced overweight and low estrogen concentrations, a phenotype similar to that of the post‐menopausal period.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Selective regulation of hepatic lipid metabolism by the AMP-activated protein kinase pathway in late-pregnant rats

Sandra Rodrigues; Lucas C. Pantaleão; Tatiane C.A. Nogueira; Patrícia Rodrigues Lourenço Gomes; Gabriela Girao Albuquerque; Renato Tadeu Nachbar; Francisco Leonardo Torres-Leal; Luciana C. Caperuto; Camilo Lellis-Santos; Gabriel F. Anhê; Silvana Bordin

The liver plays an essential role in maternal metabolic adaptation during late pregnancy. With regard to lipid metabolism, increased secretion of very low-density lipoprotein (VLDL) is characteristic of late pregnancy. Despite this well-described metabolic plasticity, the molecular changes underlying the hepatic adaptation to pregnancy remain unclear. As AMPK is a key intracellular energy sensor, we investigated whether this protein assumes a causal role in the hepatic adaptation to pregnancy. Pregnant Wistar rats were treated with vehicle or AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) for 5 days starting at gestational day 14. At the end of treatment, the rats were subjected to an intraperitoneal pyruvate tolerance test and in situ liver perfusion with pyruvate. The livers were processed for Western blot analysis, quantitative PCR, thin-layer chromatography, enzymatic activity, and glycogen content measurements. Blood biochemical profiles were also assessed. We found that AMPK and ACC phosphorylation were reduced in the livers of pregnant rats in parallel with a reduced level of hepatic gluconeogenesis of pyruvate. This effect was accompanied by both a reduction in the levels of hepatic triglycerides (TG) and an increase in circulating levels of TG. Treatment with AICAR restored hepatic levels of TG to those observed in nonpregnant rats. Additionally, AMPK activation reduced the upregulation of genes related to VLDL synthesis and secretion observed in the livers of pregnant rats. We conclude that the increased secretion of hepatic TG in late pregnancy is concurrent with a transcriptional profile that favors VLDL production. This transcriptional profile results from the reduction in hepatic AMPK activity.

Collaboration


Dive into the Renato Tadeu Nachbar's collaboration.

Top Co-Authors

Avatar

Rui Curi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo R. Silveira

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Lucas Guimarães-Ferreira

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge