Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renato Umeton is active.

Publication


Featured researches published by Renato Umeton.


Multiple Sclerosis Journal | 2012

Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood

Roberta Calabrese; Michele Zampieri; Rosella Mechelli; Viviana Annibali; Tiziana Guastafierro; Fabio Ciccarone; Giulia Coarelli; Renato Umeton; Marco Salvetti; Paola Caiafa

Background: Peptidylarginine deiminase 2 (PAD2) and peptidylarginine deiminase 4 (PAD4) are two members of PAD family which are over-expressed in the multiple sclerosis (MS) brain. Through its enzymatic activity PAD2 converts myelin basic protein (MBP) arginines into citrullines – an event that may favour autoimmunity – while peptidylarginine deiminase 4 (PAD4) is involved in chromatin remodelling. Objectives: Our aim was to verify whether an altered epigenetic control of PAD2, as already shown in the MS brain, can be observed in peripheral blood mononuclear cells (PBMCs) of patients with MS since some of these cells also synthesize MBP. Methods: The expression of most suitable reference genes and of PAD2 and PAD4 was assessed by qPCR. Analysis of DNA methylation was performed by bisulfite method. Results: The comparison of PAD2 expression level in PBMCs from patients with MS vs. healthy donors showed that, as well as in the white matter of MS patients, the enzyme is significantly upregulated in affected subjects. Methylation pattern analysis of a CpG island located in the PAD2 promoter showed that over-expression is associated with promoter demethylation. Conclusion: Defective regulation of PAD2 in the periphery, without the immunological shelter of the blood–brain barrier, may contribute to the development of the autoimmune responses in MS.


PLOS ONE | 2013

A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis

Rosella Mechelli; Renato Umeton; Claudia Policano; Viviana Annibali; Giulia Coarelli; Vito A. G. Ricigliano; Danila Vittori; Arianna Fornasiero; Maria Chiara Buscarinu; Silvia Romano; Marco Salvetti; Giovanni Ristori

Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms.


Multiple Sclerosis Journal | 2017

Altered intestinal permeability in patients with relapsing–remitting multiple sclerosis: A pilot study:

Maria Chiara Buscarinu; Benedetta Cerasoli; Viviana Annibali; Claudia Policano; Luana Lionetto; Matilde Capi; Rosella Mechelli; Silvia Romano; Arianna Fornasiero; Gianluca Mattei; Eleonora Piras; Daniela F. Angelini; Luca Battistini; Maurizio Simmaco; Renato Umeton; Marco Salvetti; Giovanni Ristori

Background: Alterations of intestinal permeability (IP) may contribute to the pathophysiology of immune-mediated diseases. Objective: We investigated the possible association between IP changes and multiple sclerosis (MS). Methods: We studied 22 patients with relapsing–remitting multiple sclerosis (RRMS) and 18 age- and sex-matched healthy donors (HDs), including five twin pairs (one concordant, and four discordant for disease). Measurement of lactulose (L) and mannitol (M; two non-metabolized sugars) levels in urine samples, after an oral load, allowed to quantify gut dysfunction. Results: The proportion of participants with increased IP was significantly higher in patients than in HDs (16/22 (73%) versus 5/18 (28%); p = 0.001). Accordingly, the L/M urinary ratio showed significantly higher values in patients than in controls (p = 0.0284). Urinary mannitol concentration was significantly lower in patients than in controls (p = 0.022), suggesting a deficit of absorption from intestinal lumen. Such changes did not appear related to patients’ clinical–radiological features. Conclusion: The relatively high proportion of IP changes in RR-MS patients seems to confirm our work hypothesis and warrants more work to confirm the result on a larger sample, and to understand the implications for related immunological disturbances and intestinal microbiota alterations. Our finding may also have relevance for oral treatments, recently introduced in clinical practice.


Neurology | 2015

Epstein-Barr virus genetic variants are associated with multiple sclerosis

Rosella Mechelli; Caterina Manzari; Claudia Policano; Anita Annese; Ernesto Picardi; Renato Umeton; Arianna Fornasiero; Anna Maria D'Erchia; Maria Chiara Buscarinu; Cristina Agliardi; Viviana Annibali; Barbara Serafini; Barbara Rosicarelli; Silvia Romano; Daniela F. Angelini; Vito A. G. Ricigliano; Fabio Buttari; Luca Battistini; Diego Centonze; Franca Rosa Guerini; Sandra D'Alfonso; Marco Salvetti; Giovanni Ristori

Objective: We analyzed the Epstein-Barr nuclear antigen 2 (EBNA2) gene, which contains the most variable region of the viral genome, in persons with multiple sclerosis (MS) and control subjects to verify whether virus genetic variants are involved in disease development. Methods: A seminested PCR approach and Sanger sequencing were used to analyze EBNA2 in 53 patients and 38 matched healthy donors (HDs). High-throughput sequencing by Illumina MiSeq was also applied in a subgroup of donors (17 patients and 17 HDs). Patients underwent gadolinium-enhanced MRI and human leucocyte antigen typing. Results: MS risk significantly correlated with an excess of 1.2 allele (odds ratio [OR] = 5.13; 95% confidence interval [CI] 1.84–14.32; p = 0.016) and underrepresentation of 1.3B allele (OR = 0.23; 95% CI 0.08–0.51; p = 0.0006). We identified new genetic variants, mostly 1.2 allele- and MS-associated (especially amino acid variation at position 245; OR = 9.4; 95% CI 1.19–78.72; p = 0.0123). In all cases, the consensus sequence from deep sequencing confirmed Sanger sequencing (including the cosegregation of newly identified variants with known EBNA2 alleles) and showed that the extent of genotype intraindividual variability was higher than expected: rare EBNA2 variants were detected in all HDs and patients with MS (range 1–17 and 3–19, respectively). EBNA2 variants did not seem to correlate with human leucocyte antigen typing or clinical/MRI features. Conclusions: Our study unveils a strong association between Epstein-Barr virus genomic variants and MS, reinforcing the idea that Epstein-Barr virus contributes to disease development.


Cytokine & Growth Factor Reviews | 2015

IFN-β and multiple sclerosis: From etiology to therapy and back

Viviana Annibali; Rosella Mechelli; Silvia Romano; Maria Chiara Buscarinu; Arianna Fornasiero; Renato Umeton; Vito A. G. Ricigliano; Francesco Orzi; Eliana M. Coccia; Marco Salvetti; Giovanni Ristori

Several immunomodulatory treatments are currently available for relapsing-remitting forms of multiple sclerosis (RRMS). Interferon beta (IFN) was the first therapeutic intervention able to modify the course of the disease and it is still the most used first-line treatment in RRMS. Though two decades have passed since IFN-β was introduced in the management of MS, it remains a valid approach because of its good benefit/risk profile. This is witnessed by new efforts of pharmaceutical industry to improve this line: a PEGylated form of subcutaneous IFN-β 1a, (Plegridy(®)) with a longer half-life, has been recently approved in RRMS. This review will survey the various stages of the use of type I IFN in MS, with special attention to the effect of the treatment on the supposed viral etiologic factors associated to the disease. The antiviral activities of IFN (that initially prompted its use as immunomodulatory agent in MS), and the mounting evidences in favor of a viral etiology in MS, allowed us to outline a re-appraisal from etiology to therapy and back.


BioMed Research International | 2015

Novel Method for Automated Analysis of Retinal Images: Results in Subjects with Hypertensive Retinopathy and CADASIL

Michele Cavallari; Claudio Stamile; Renato Umeton; Francesco Calimeri; Francesco Orzi

Morphological analysis of the retinal vessels by fundoscopy provides noninvasive means for detecting and staging systemic microvascular damage. However, full exploitation of fundoscopy in clinical settings is limited by paucity of quantitative, objective information obtainable through the observer-driven evaluations currently employed in routine practice. Here, we report on the development of a semiautomated, computer-based method to assess retinal vessel morphology. The method allows simultaneous and operator-independent quantitative assessment of arteriole-to-venule ratio, tortuosity index, and mean fractal dimension. The method was implemented in two conditions known for being associated with retinal vessel changes: hypertensive retinopathy and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). The results showed that our approach is effective in detecting and quantifying the retinal vessel abnormalities. Arteriole-to-venule ratio, tortuosity index, and mean fractal dimension were altered in the subjects with hypertensive retinopathy or CADASIL with respect to age- and gender-matched controls. The interrater reliability was excellent for all the three indices (intraclass correlation coefficient ≥ 85%). The method represents simple and highly reproducible means for discriminating pathological conditions characterized by morphological changes of retinal vessels. The advantages of our method include simultaneous and operator-independent assessment of different parameters and improved reliability of the measurements.


Comparative and Functional Genomics | 2013

A Mechanistic, Stochastic Model Helps Understand Multiple Sclerosis Course and Pathogenesis

Isabella Bordi; Renato Umeton; Vito A. G. Ricigliano; Viviana Annibali; Rosella Mechelli; Giovanni Ristori; Francesca Grassi; Marco Salvetti; Alfonso Sutera

Heritable and nonheritable factors play a role in multiple sclerosis, but their effect size appears too small, explaining relatively little about disease etiology. Assuming that the factors that trigger the onset of the disease are, to some extent, also those that generate its remissions and relapses, we attempted to model the erratic behaviour of the disease course as observed on a dataset containing the time series of relapses and remissions of 70 patients free of disease-modifying therapies. We show that relapses and remissions follow exponential decaying distributions, excluding periodic recurrences and confirming that relapses manifest randomly in time. It is found that a mechanistic model with a random forcing describes in a satisfactory manner the occurrence of relapses and remissions, and the differences in the length of time spent in each one of the two states. This model may describe how interactions between “soft” etiologic factors occasionally reach the disease threshold thanks to comparably small external random perturbations. The model offers a new context to rethink key problems such as “missing heritability” and “hidden environmental structure” in the etiology of complex traits.


ACS Synthetic Biology | 2013

Efficient Behavior of Photosynthetic Organelles via Pareto Optimality, Identifiability, and Sensitivity Analysis

Giovanni Carapezza; Renato Umeton; Jole Costanza; Claudio Angione; Giovanni Stracquadanio; Alessio Papini; Pietro Liò; Giuseppe Nicosia

In this work, we develop methodologies for analyzing and cross comparing metabolic models. We investigate three important metabolic networks to discuss the complexity of biological organization of organisms, modeling, and system properties. In particular, we analyze these metabolic networks because of their biotechnological and basic science importance: the photosynthetic carbon metabolism in a general leaf, the Rhodobacter spheroides bacterium, and the Chlamydomonas reinhardtii alga. We adopt single- and multi-objective optimization algorithms to maximize the CO 2 uptake rate and the production of metabolites of industrial interest or for ecological purposes. We focus both on the level of genes (e.g., finding genetic manipulations to increase the production of one or more metabolites) and on finding concentration enzymes for improving the CO 2 consumption. We find that R. spheroides is able to absorb an amount of CO 2 until 57.452 mmol h (-1) gDW (-1) , while C. reinhardtii obtains a maximum of 6.7331. We report that the Pareto front analysis proves extremely useful to compare different organisms, as well as providing the possibility to investigate them with the same framework. By using the sensitivity and robustness analysis, our framework identifies the most sensitive and fragile components of the biological systems we take into account, allowing us to compare their models. We adopt the identifiability analysis to detect functional relations among enzymes; we observe that RuBisCO, GAPDH, and FBPase belong to the same functional group, as suggested also by the sensitivity analysis.


Neurotherapeutics | 2018

Intestinal Permeability in Relapsing-Remitting Multiple Sclerosis

Maria Chiara Buscarinu; Silvia Romano; Rosella Mechelli; R. Pizzolato Umeton; Michela Ferraldeschi; Arianna Fornasiero; R. Reniè; Benedetta Cerasoli; E. Morena; C. Romano; N. D. Loizzo; Renato Umeton; Marco Salvetti; Giovanni Ristori

Changes of intestinal permeability (IP) have been extensively investigated in inflammatory bowel diseases (IBD) and celiac disease (CD), underpinned by a known unbalance between microbiota, IP and immune responses in the gut. Recently the influence of IP on brain function has greatly been appreciated. Previous works showed an increased IP that preceded experimental autoimmune encephalomyelitis development and worsened during disease with disruption of TJ. Moreover, studying co-morbidity between Crohns disease and MS, a report described increased IP in a minority of cases with MS. In a recent work we found that an alteration of IP is a relatively frequent event in relapsing-remitting MS, with a possible genetic influence on the determinants of IP changes (as inferable from data on twins); IP changes included a deficit of the active mechanism of absorption from intestinal lumen. The results led us to hypothesize that gut may contribute to the development of MS, as suggested by another previous work of our group: a population of CD8+CD161high T cells, belonging to the mucosal-associated invariant T (MAIT) cells, a gut- and liver-homing subset, proved to be of relevance for MS pathogenesis. We eventually suggest future lines of research on IP in MS: studies on IP changes in patients under first-line oral drugs may result useful to improve their therapeutic index; correlating IP and microbiota changes, or IP and blood-brain barrier changes may help clarify disease pathogenesis; exploiting the IP data to disclose co-morbidities in MS, especially with CD and IBD, may be important for patient care.


PLOS ONE | 2013

Contribution of Genome-Wide Association Studies to Scientific Research: A Pragmatic Approach to Evaluate Their Impact

Vito A. G. Ricigliano; Renato Umeton; Lorenzo Germinario; Eleonora Alma; Martina Briani; Noemi Di Segni; Dalma Montesanti; Giorgia Pierelli; Fabiana Cancrini; Cristiano Lomonaco; Francesca Grassi; Gabriella Palmieri; Marco Salvetti

The factual value of genome-wide association studies (GWAS) for the understanding of multifactorial diseases is a matter of intense debate. Practical consequences for the development of more effective therapies do not seem to be around the corner. Here we propose a pragmatic and objective evaluation of how much new biology is arising from these studies, with particular attention to the information that can help prioritize therapeutic targets. We chose multiple sclerosis (MS) as a paradigm disease and assumed that, in pre-GWAS candidate-gene studies, the knowledge behind the choice of each gene reflected the understanding of the disease prior to the advent of GWAS. Importantly, this knowledge was based mainly on non-genetic, phenotypic grounds. We performed single-gene and pathway-oriented comparisons of old and new knowledge in MS by confronting an unbiased list of candidate genes in pre-GWAS association studies with those genes exceeding the genome-wide significance threshold in GWAS published from 2007 on. At the single gene level, the majority (94 out of 125) of GWAS-discovered variants had never been contemplated as plausible candidates in pre-GWAS association studies. The 31 genes that were present in both pre- and post-GWAS lists may be of particular interest in that they represent disease-associated variants whose pathogenetic relevance is supported at the phenotypic level (i.e. the phenotypic information that steered their selection as candidate genes in pre-GWAS association studies). As such they represent attractive therapeutic targets. Interestingly, our analysis shows that some of these variants are targets of pharmacologically active compounds, including drugs that are already registered for human use. Compared with the above single-gene analysis, at the pathway level GWAS results appear more coherent with previous knowledge, reinforcing some of the current views on MS pathogenesis and related therapeutic research. This study presents a pragmatic approach that helps interpret and exploit GWAS knowledge.

Collaboration


Dive into the Renato Umeton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Salvetti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rosella Mechelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giovanni Ristori

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Viviana Annibali

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beracah Yankama

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Romano

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge