Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renaud Lebrun is active.

Publication


Featured researches published by Renaud Lebrun.


Tabuce, R; Marivaux, L; Lebrun, R; Adaci, M; Bansalah, M; Fabre, P H; Fara, E; Gomes Rodrigues, H; Hautier, L; Jaeger, J J; Lazzari, V; Mebrouk, F; Peigné, S; Sudre, J; Tafforeau, P; Valentin, X; Mahboubi, M (2009). Anthropoid versus strepsirhine status of the African Eocene primates Algeripithecus and Azibius: craniodental evidence. Proceedings of the Royal Society B: Biological Sciences, 276(1676):4087-4094. | 2009

Anthropoid versus strepsirhine status of the African Eocene primates Algeripithecus and Azibius: craniodental evidence.

Rodolphe Tabuce; Laurent Marivaux; Renaud Lebrun; Mohammed Adaci; Mustapha Bensalah; Pierre-Henri Fabre; Emmanuel Fara; Helder Gomes Rodrigues; Lionel Hautier; Jean-Jacques Jaeger; Vincent Lazzari; Fateh Mebrouk; Stéphane Peigné; Jean Sudre; Paul Tafforeau; Mahammed Mahboubi

Recent fossil discoveries have demonstrated that Africa and Asia were epicentres for the origin and/or early diversification of the major living primate lineages, including both anthropoids (monkeys, apes and humans) and crown strepsirhine primates (lemurs, lorises and galagos). Competing hypotheses favouring either an African or Asian origin for anthropoids rank among the most hotly contested issues in paleoprimatology. The Afrocentric model for anthropoid origins rests heavily on the >45 Myr old fossil Algeripithecus minutus from Algeria, which is widely acknowledged to be one of the oldest known anthropoids. However, the phylogenetic position of Algeripithecus with respect to other primates has been tenuous because of the highly fragmentary fossils that have documented this primate until now. Recently recovered and more nearly complete fossils of Algeripithecus and contemporaneous relatives reveal that they are not anthropoids. New data support the idea that Algeripithecus and its sister genus Azibius are the earliest offshoots of an Afro–Arabian strepsirhine clade that embraces extant toothcombed primates and their fossil relatives. Azibius exhibits anatomical evidence for nocturnality. Algeripithecus has a long, thin and forwardly inclined lower canine alveolus, a feature that is entirely compatible with the long and procumbent lower canine included in the toothcomb of crown strepsirhines. These results strengthen an ancient African origin for crown strepsirhines and, in turn, strongly challenge the role of Africa as the ancestral homeland for anthropoids.


Journal of Anatomy | 2016

Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea.

Camille Grohé; Z. Jack Tseng; Renaud Lebrun; Renaud Boistel; John J. Flynn

The bony labyrinth provides a proxy for the morphology of the inner ear, a primary cognitive organ involved in hearing, body perception in space, and balance in vertebrates. Bony labyrinth shape variations often are attributed to phylogenetic and ecological factors. Here we use three‐dimensional (3D) geometric morphometrics to examine the phylogenetic and ecological patterns of variation in the bony labyrinth morphology of the most species‐rich and ecologically diversified traditionally recognized superfamily of Carnivora, the Musteloidea (e.g. weasels, otters, badgers, red panda, skunks, raccoons, coatis). We scanned the basicrania of specimens belonging to 31 species using high‐resolution X‐ray computed micro‐tomography (μCT) to virtually reconstruct 3D models of the bony labyrinths. Labyrinth morphology is captured by a set of six fixed landmarks on the vestibular and cochlear systems, and 120 sliding semilandmarks, slid at the center of the semicircular canals and the cochlea. We found that the morphology of this sensory structure is not significantly influenced by bony labyrinth size, in comparisons across all musteloids or in any of the individual traditionally recognized families (Mephitidae, Procyonidae, Mustelidae). PCA (principal components analysis) of shape data revealed that bony labyrinth morphology is clearly distinguishable between musteloid families, and permutation tests of the Kmult statistic confirmed that the bony labyrinth shows a phylogenetic signal in musteloids and in most mustelids. Both the vestibular and cochlear regions display morphological differences among the musteloids sampled, associated with the size and curvature of the semicircular canals, angles between canals, presence or absence of a secondary common crus, degree of lateral compression of the vestibule, orientation of the cochlea relative to the semicircular canals, proportions of the cochlea, and degree of curvature of its turns. We detected a significant ecological signal in the bony labyrinth shape of musteloids, differentiating semi‐aquatic taxa from non‐aquatic ones (the taxa assigned to terrestrial, arboreal, semi‐arboreal, and semi‐fossorial categories), and a significant signal for mustelids, differentiating the bony labyrinths of terrestrial, semi‐arboreal, arboreal, semi‐fossorial and semi‐aquatic species from each other. Otters and minks are distinguished from non‐aquatic musteloids by an oval rather than circular anterior canal, sinuous rather than straight lateral canal, and acute rather than straight angle between the posterior and lateral semicircular canals – each of these morphological characters has been related previously to animal sensitivity for detecting head motion in space.


Proceedings of the Royal Society B - Biological Sciences , 284 , Article 20170194. (2017) | 2017

Open data and digital morphology

Thomas Davies; Imran A. Rahman; Stephan Lautenschlager; John A. Cunningham; Robert J. Asher; Paul M. Barrett; Karl T. Bates; Stefan Bengtson; Roger B. J. Benson; Doug M. Boyer; José Braga; Jen A. Bright; Leon P. A. M. Claessens; Philip G. Cox; Xi-Ping Dong; Alistair R. Evans; Peter L. Falkingham; Matt Friedman; Russell J. Garwood; Anjali Goswami; John R. Hutchinson; Nathan Jeffery; Zerina Johanson; Renaud Lebrun; Carlos Martínez-Pérez; Jesús Marugán-Lobón; Paul O'Higgins; Brian D. Metscher; Maeva J. Orliac; Timothy Rowe

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Journal of Mammalogy | 2015

Morphological diversity of the bony labyrinth (inner ear) in extant Xenarthrans and its relation to phylogeny

Guillaume Billet; Lionel Hautier; Renaud Lebrun

We present a survey of the morphological diversity of the bony labyrinth of the inner ear in Xenarthra, including the fossil ground sloth Megatherium. Using a combination of traditional and geometric morphometrics, correlation analyses, and qualitative observations, we attempt to extract independent and informative phylogenetic characters of the bony labyrinth for the superorder. Geometric morphometric analyses demonstrate a strong imprint of phylogenetic history on the shape of the bony labyrinth of xenarthrans and a weak influence of allometry. Discrete characters mapped on a consensus cladogram for xenarthrans show support for many traditional nodes within the superorder and may also provide critical information for problematic nodes within Cingulata. A relatively large lateral semicircular canal may, for instance, represent a synapomorphy for the molecular clade allying fairy armadillos (Chlamyphorinae) to the Tolypeutinae. Striking convergences were detected when comparing Megatherium, the giant ground sloth, with extant armadillos and Chlamyphorus, the pink fairy armadillo, with the extant three- and two-toed sloths. These findings have the potential to help understand the phylogenetic relationships of fossil xenarthrans.


Integrative and Comparative Biology | 2011

Shake rattle and roll: the bony labyrinth and aerial descent in Squamates

Renaud Boistel; Anthony Herrel; Renaud Lebrun; Gheylen Daghfous; Paul Tafforeau; Jonathan B. Losos; Bieke Vanhooydonck

Controlled aerial descent has evolved many times independently in vertebrates. Squamates (lizards and snakes) are unusual in that respect due to the large number of independent origins of the evolution of this behavior. Although some squamates such as flying geckos of the genus Ptychozoon and the flying dragons of the genus Draco show obvious adaptations including skin flaps or enlarged ribs allowing them to increase their surface area and slow down their descent, many others appear unspecialized. Yet, specializations can be expected at the level of the sensory and neural systems allowing animals to maintain stability during controlled aerial descent. The vestibular system is a likely candidate given that it is an acceleration detector and is well-suited to detect changes in pitch, roll and yaw. Here we use conventional and synchrotron μCT scans to quantify the morphology of the vestibular system in squamates able to perform controlled aerial descent compared to species characterized by a terrestrial or climbing life style. Our results show the presence of a strong phylogenetic signal in the data with the vestibular system in species from the same family being morphologically similar. However, both our shape analysis and an analysis of the dimensions of the vestibular system showed clear differences among animals with different life-styles. Species able to perform a controlled aerial descent differed in the position and shape of the inner ear, especially of the posterior ampulla. Given the limited stability of squamates against roll and the fact that the posterior ampulla is tuned to changes in roll this suggests an adaptive evolution of the vestibular system in squamates using controlled aerial descent. Future studies testing for similar differences in other groups of vertebrates known to use controlled aerial descent are needed to test the generality of this observation.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Endocranial morphology of Palaeocene Plesiadapis tricuspidens and evolution of the early primate brain.

Maeva J. Orliac; Sandrine Ladevèze; Philip D. Gingerich; Renaud Lebrun; Thierry Smith

Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe—the most complete plesiadapoid cranium known—shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain.


PLOS ONE | 2013

Djebelemur, a Tiny Pre-Tooth-Combed Primate from the Eocene of Tunisia: A Glimpse into the Origin of Crown Strepsirhines

Laurent Marivaux; Anusha Ramdarshan; El Mabrouk Essid; Wissem Marzougui; Hayet Khayati Ammar; Renaud Lebrun; Bernard Marandat; Gilles Merzeraud; Rodolphe Tabuce; Monique Vianey-Liaud

Background Molecular clock estimates of crown strepsirhine origins generally advocate an ancient antiquity for Malagasy lemuriforms and Afro-Asian lorisiforms, near the onset of the Tertiary but most often extending back to the Late Cretaceous. Despite their inferred early origin, the subsequent evolutionary histories of both groups (except for the Malagasy aye-aye lineage) exhibit a vacuum of lineage diversification during most part of the Eocene, followed by a relative acceleration in diversification from the late Middle Eocene. This early evolutionary stasis was tentatively explained by the possibility of unrecorded lineage extinctions during the early Tertiary. However, this prevailing molecular view regarding the ancient origin and early diversification of crown strepsirhines must be viewed with skepticism due to the new but still scarce paleontological evidence gathered in recent years. Methodological/Principal Findings Here, we describe new fossils attributable to Djebelemur martinezi, a≈50 Ma primate from Tunisia (Djebel Chambi). This taxon was originally interpreted as a cercamoniine adapiform based on limited information from its lower dentition. The new fossils provide anatomical evidence demonstrating that Djebelemur was not an adapiform but clearly a distant relative of lemurs, lorises and galagos. Cranial, dental and postcranial remains indicate that this diminutive primate was likely nocturnal, predatory (primarily insectivorous), and engaged in a form of generalized arboreal quadrupedalism with frequent horizontal leaping. Djebelemur did not have an anterior lower dentition as specialized as that characterizing most crown strepsirhines (i.e., tooth-comb), but it clearly exhibited a transformed antemolar pattern representing an early stage of a crown strepsirhine-like adaptation (“pre-tooth-comb”). Conclusions/Significance These new fossil data suggest that the differentiation of the tooth-comb must postdate the djebelemurid divergence, a view which hence constrains the timing of crown strepsirhine origins to the Middle Eocene, and then precludes the existence of unrecorded lineage extinctions of tooth-combed primates during the earliest Tertiary.


PLOS ONE | 2011

First Hominoid from the Late Miocene of the Irrawaddy Formation (Myanmar)

Jean-Jacques Jaeger; Aung Naing Soe; Olivier Chavasseau; Pauline Coster; Edouard-Georges Emonet; Franck Guy; Renaud Lebrun; Aye Maung; Aung Aung Khyaw; Hla Shwe; Soe Thura Tun; Kyaw Linn Oo; Mana Rugbumrung; Hervé Bocherens; Mouloud Benammi; Kamol Chaivanich; Paul Tafforeau; Yaowalak Chaimanee

For over a century, a Neogene fossil mammal fauna has been known in the Irrawaddy Formation in central Myanmar. Unfortunately, the lack of accurately located fossiliferous sites and the absence of hominoid fossils have impeded paleontological studies. Here we describe the first hominoid found in Myanmar together with a Hipparion (s.l.) associated mammal fauna from Irrawaddy Formation deposits dated between 10.4 and 8.8 Ma by biochronology and magnetostratigraphy. This hominoid documents a new species of Khoratpithecus, increasing thereby the Miocene diversity of southern Asian hominoids. The composition of the associated fauna as well as stable isotope data on Hipparion (s.l.) indicate that it inhabited an evergreen forest in a C3-plant environment. Our results enlighten that late Miocene hominoids were more regionally diversified than other large mammals, pointing towards regionally-bounded evolution of the representatives of this group in Southeast Asia. The Irrawaddy Formation, with its extensive outcrops and long temporal range, has a great potential for improving our knowledge of hominoid evolution in Asia.


Journal of Human Evolution | 2013

New insights into the ear region anatomy and cranial blood supply of advanced stem Strepsirhini: Evidence from three primate petrosals from the Eocene of Chambi, Tunisia

Julien Benoit; El Mabrouk Essid; Wissem Marzougui; Hayet Khayati Ammar; Renaud Lebrun; Rodolphe Tabuce; Laurent Marivaux

We report the discovery of three isolated primate petrosal fragments from the fossiliferous locality of Chambi (Tunisia), a primate-bearing locality dating from the late early to the early middle Eocene. These fossils display a suite of anatomical characteristics otherwise found only in strepsirhines, and as such might be attributed either to Djebelemur or/and cf. Algeripithecus, the two diminutive stem strepsirhine primates recorded from this locality. Although damaged, the petrosals provide substantial information regarding the ear anatomy of these advanced stem strepsirhines (or pre-tooth-combed primates), notably the patterns of the pathway of the arterial blood supply. Using μCT-scanning techniques and digital segmentation of the structures, we show that the transpromontorial and stapedial branches of the internal carotid artery (ICA) were present (presence of bony tubes), but seemingly too small to supply enough blood to the cranium alone. This suggests that the ICA was not the main cranial blood supply in stem strepsirhines, but that the pharyngeal or vertebral artery primitively ensured a great part of this role instead, an arterial pattern that is reminiscent of modern cheirogaleid, lepilemurid lemuriforms and lorisiforms. This could explain parallel loss of the ICA functionality among these families. Specific measurements made on the cochlea indicate that the small strepsirhine primate(s) from Chambi was (were) highly sensitive to high frequencies and poorly sensitive to low frequencies. Finally, variance from orthogonality of the plane of the semicircular canals (SCs) calculated on one petrosal (CBI-1-569) suggests that Djebelemur or cf. Algeripithecus likely moved (at least its head) in a way similar to that of modern mouse lemurs.


PLOS ONE | 2015

Cortical Structure of Hallucal Metatarsals and Locomotor Adaptations in Hominoids

Tea Jashashvili; Mark R Dowdeswell; Renaud Lebrun; Kristian J. Carlson

Diaphyseal morphology of long bones, in part, reflects in vivo loads experienced during the lifetime of an individual. The first metatarsal, as a cornerstone structure of the foot, presumably expresses diaphyseal morphology that reflects loading history of the foot during stance phase of gait. Human feet differ substantially from those of other apes in terms of loading histories when comparing the path of the center of pressure during stance phase, which reflects different weight transfer mechanisms. Here we use a novel approach for quantifying continuous thickness and cross-sectional geometric properties of long bones in order to test explicit hypotheses about loading histories and diaphyseal structure of adult chimpanzee, gorilla, and human first metatarsals. For each hallucal metatarsal, 17 cross sections were extracted at regularly-spaced intervals (2.5% length) between 25% and 65% length. Cortical thickness in cross sections was measured in one degree radially-arranged increments, while second moments of area were measured about neutral axes also in one degree radially-arranged increments. Standardized thicknesses and second moments of area were visualized using false color maps, while penalized discriminant analyses were used to evaluate quantitative species differences. Humans systematically exhibit the thinnest diaphyseal cortices, yet the greatest diaphyseal rigidities, particularly in dorsoplantar regions. Shifts in orientation of maximum second moments of area along the diaphysis also distinguish human hallucal metatarsals from those of chimpanzees and gorillas. Diaphyseal structure reflects different loading regimes, often in predictable ways, with human versus non-human differences probably resulting both from the use of arboreal substrates by non-human apes and by differing spatial relationships between hallux position and orientation of the substrate reaction resultant during stance. The novel morphological approach employed in this study offers the potential for transformative insights into form-function relationships in additional long bones, including those of extinct organisms (e.g., fossils).

Collaboration


Dive into the Renaud Lebrun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodolphe Tabuce

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Tafforeau

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Loïc Costeur

Naturhistorisches Museum

View shared research outputs
Top Co-Authors

Avatar

Maeva J. Orliac

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Mohammed Adaci

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Mark R Dowdeswell

University of the Witwatersrand

View shared research outputs
Researchain Logo
Decentralizing Knowledge