Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renaud Mahieux is active.

Publication


Featured researches published by Renaud Mahieux.


Molecular and Cellular Biology | 2000

Inactivation of p53 by Human T-Cell Lymphotropic Virus Type 1 Tax Requires Activation of the NF-κB Pathway and Is Dependent on p53 Phosphorylation

Cynthia A. Pise-Masison; Renaud Mahieux; Hua Jiang; Margaret Ashcroft; Michael F. Radonovich; Janet F. Duvall; Claire Guillerm; John N. Brady

ABSTRACT p53 plays a key role in guarding cells against DNA damage and transformation. We previously demonstrated that the human T-cell lymphotropic virus type 1 (HTLV-1) Tax can inactivate p53 transactivation function in lymphocytes. The present study demonstrates that in T cells, Tax-induced p53 inactivation is dependent upon NF-κB activation. Analysis of Tax mutants demonstrated that Tax inactivation of p53 function correlates with the ability of Tax to induce NF-κB but not p300 binding or CREB transactivation. The Tax-induced p53 inactivation can be overcome by overexpression of a dominant IκB mutant. Tax-NF-κB-induced p53 inactivation is not due to p300 squelching, since overexpression of p300 does not recover p53 activity in the presence of Tax. Further, using wild-type and p65 knockout mouse embryo fibroblasts (MEFs), we demonstrate that the p65 subunit of NF-κB is critical for Tax-induced p53 inactivation. While Tax can inactivate endogenous p53 function in wild-type MEFs, it fails to inactivate p53 function in p65 knockout MEFs. Importantly, Tax-induced p53 inactivation can be restored by expression of p65 in the knockout MEFs. Finally, we present evidence that phosphorylation of serines 15 and 392 correlates with inactivation of p53 by Tax in T cells. This study provides evidence that the divergent NF-κB proliferative and p53 cell cycle arrest pathways may be cross-regulated at several levels, including posttranslational modification of p53.


Oncogene | 2005

The HTLV-I Tax oncoprotein targets the retinoblastoma protein for proteasomal degradation

Kylene Kehn; Cynthia de la Fuente; Katharine Strouss; Reem Berro; Hua Jiang; John N. Brady; Renaud Mahieux; Anne Pumfery; Maria Elena Bottazzi; Fatah Kashanchi

Human T-cell leukemia virus type-I (HTLV-I), the etiologic agent of adult T-cell leukemia (ATL), is estimated to affect 10–20 million people worldwide. The transforming ability of HTLV-I has been largely attributed to the viral protein Tax, which modulates the activity of several well-known cell cycle regulators. An important cell cycle regulator, the retinoblastoma (Rb) protein, is often inactivated in many cancers including virally induced cancers. Upon examination of Rb status, we observed a decrease in Rb protein expression in HTLV-1-infected cell lines as well as in ex vivo ATL patient samples. Transient transfection assays indicated that decreased Rb protein levels were Tax dependent. Here, we demonstrate for the first time that Tax directly associates with Rb. This interaction was localized within the B pocket of Rb and the C-terminus of Tax (aa 245–353). Within the C-terminus of Tax, we have identified an LXCXE-like motif, that when mutated resulted in the loss of Tax/Rb interaction. Furthermore, through the use of proteasome inhibitors, such as MG-132, in vivo and proteasome degradation assays in vitro, we found that Tax destabilizes the hypo-phosphorylated (active) form of Rb via the proteasome pathway. Therefore, we propose a model whereby Tax targets Rb to the proteasome by acting as a molecular bridge bringing Rb into contact with the proteasome for degradation.


Journal of Virology | 2007

Cooperation of NF-κB2/p100 Activation and the PDZ Domain Binding Motif Signal in Human T-Cell Leukemia Virus Type 1 (HTLV-1) Tax1 but Not HTLV-2 Tax2 Is Crucial for Interleukin-2-Independent Growth Transformation of a T-Cell Line

Masaya Higuchi; Chikako Tsubata; Rie Kondo; Sakiko Yoshida; Masahiko Takahashi; Masayasu Oie; Yuetsu Tanaka; Renaud Mahieux; Masao Matsuoka; Masahiro Fujii

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) but not HTLV-2 is associated with adult T-cell leukemia, and the distinct pathogenicity of these two closely related viruses is thought to stem from the distinct biological functions of the respective transforming proteins, HTLV-1 Tax1 and HTLV-2 Tax2. In this study, we demonstrate that Tax1 but not Tax2 interacts with NF-κB2/p100 and activates it by inducing the cleavage of p100 into the active transcription factor p52. Using RNA interference methods, we further show that NF-κB2/p100 is required for the transformation induced by Tax1, as determined by the ability to convert a T-cell line (CTLL-2) from interleukin-2 (IL-2)-dependent to -independent growth. While Tax2 shows a reduced transforming activity relative to Tax1, Tax2 fused with a PDZ domain binding motif (PBM) present only in Tax1 shows transforming activity equivalent to that of Tax1 in CTLL-2 cells expressing an inducer of p52 processing. These results reveal that the activation of NF-κB2/p100 plays a crucial role in the Tax1-mediated transformation of T cells and that NF-κB2/p100 activation and PBM function are both responsible for the augmented transforming activity of Tax1 relative to Tax2, thus suggesting that these Tax1-specific functions play crucial roles in HTLV-1 leukemogenesis.


Journal of Virology | 2000

Overexpression of p21(waf1) in human T-cell lymphotropic virus type 1-infected cells and its association with cyclin A/cdk2.

Cynthia de la Fuente; Francisco Santiago; Siew yen Chong; Longwen Deng; Todd Mayhood; Peng Fu; Dana Stein; Thomas N. Denny; Frederick D. Coffman; Nazli Azimi; Renaud Mahieux; Fatah Kashanchi

ABSTRACT Human T-cell lymphotropic virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). T-cell transformation is mainly due to the actions of the viral phosphoprotein Tax. Tax interacts with multiple transcriptional factors, aiding the transcription of many cellular genes. Here, we report that the cyclin-dependent kinase inhibitor p21/waf1 is overexpressed in all HTLV-1-infected cell lines tested as well as in ATL and HAM/TSP patient samples. Tax was found to be able to transactivate the endogenous p21/waf1 promoter, as detected by RNase protection, as well as activate a series of wild-type and 5′-deletion constructs linked to a luciferase reporter cassette. Wild-type but not a mutant form of Tax (M47) transactivated the p21/waf1 promoter in a p53-independent manner and utilized a minimal promoter that contained E2A and TATA box sequences. The p21/waf1 protein was reproducibly observed to be complexed with cyclin A/cdk2 and not with any other known G1, S, or G2/M cyclins. Functionally, the association of p21/cyclin A/cdk2 decreased histone H1 phosphorylation in vitro, as observed in immunoprecipitations followed by kinase assays, and affected other substrates, such as the C terminus of Rb protein involved in c-Abl and histone deacetylase-1 (HDAC1) regulation. Interestingly, upon the use of a stress signal, such as gamma-irradiation, we found that the p21/cyclin A/cdk2 complex was able to block all known phosphorylation sites on the Rb molecule. Finally, using elutriated cell cycle fractions and a stress signal, we observed that the HTLV-1-infected T cells containing wild-type Tax, which had been in early or mid-G1 phase prior to gamma-irradiation, arrested in G1 and did not undergo apoptosis. This may be an important mechanism for an oncogenic virus such as HTLV-1 to stop the host at the G1/S boundary and to repair the damaged DNA upon injury, prior to S-phase entry.


Journal of Biological Chemistry | 2004

A 10-Amino Acid Domain within Human T-cell Leukemia Virus Type 1 and Type 2 Tax Protein Sequences Is Responsible for Their Divergent Subcellular Distribution

Laurent Meertens; Sébastien Alain Chevalier; Robert Weil; Antoine Gessain; Renaud Mahieux

Human T-cell leukemia virus type 1 and type 2 (HTLV-1/2) are related retroviruses that infect T-lymphocytes. Whereas HTLV-1 infection can cause leukemia, HTLV-2 has not been demonstrated to be the agent of a hematological malignant disease. Nevertheless, the virally encoded Tax-1 and Tax-2 transactivators display a high percentage of similarity. Tax-1 is a shuttling protein that contains a noncanonical nuclear localization signal as well as a nuclear export signal. The presence of the nuclear localization signal and the nuclear export signal domains in the Tax-2 sequence has not been determined. The distribution of Tax-2 in infected cells is not known but has been assumed to be similar to that of Tax-1. By using a Tax-2-specific antibody, we report here that Tax-2 is located predominantly in the cytoplasm of the HTLV-2 immortalized or transformed infected T-cells. These results were confirmed after transient transfection of untagged Tax-1 and Tax-2 constructs, histidine tag Tax1/Tax2, GFP-Tax, and Tax-GFP fusion constructs in several cell lines. We show that this unanticipated localization is not due to a default in the Tax-2 nuclear localization signal functions nor to major differences in Tax-2 versus Tax-1 binding to the IKKγ/NEMO protein. In addition, we demonstrate that inhibiting the proteasome results in a relocalization of Tax-1 in the cytoplasm, similar to that of Tax-2. By using a series of Tax-1/Tax-2 chimeras, we determined that the minimal domain that is necessary for Tax-2 peculiar distribution encompasses amino acids 90-100. Finally, we show a high correlation between intracellular localization of Tax and their NF-κB or CREB transactivating ability.


Pathologie Biologie | 2009

The human HTLV-3 and HTLV-4 retroviruses: new members of the HTLV family.

Renaud Mahieux; Antoine Gessain

Human T cell leukemia/lymphoma virus Type 1 and 2 (HTLV-1 and HTLV-2), together with their simian counterparts (STLV-1, STLV-2), belong to the Primate T lymphotropic viruses group (PTLV). HTLV-1 infects 15 to 20million people worldwide, while STLV-1 is endemic in a number of simian or ape species living in Africa or Asia. The high percentage of homologies between HTLV-1 and STLV-1 strains, led to the demonstration that most HTLV-1 subtypes arose from interspecies transmission between monkeys and humans. STLV-3 viruses belong to the third PTLV type and are equally divergent from HTLV-1 than from HTLV-2. They are endemic in several monkey species that live in West, Central, and East Africa. In 2005, we and others reported the discovery of the human homolog (HTLV-3) of STLV-3 in two asymptomatic inhabitants from South Cameroon whose sera exhibited HTLV indeterminate serologies. More recently, we reported a third case of HTLV-3 infection in Cameroon suggesting that this virus is not rare in the human population living in Central Africa. Together with STLV-3, these three human viral strains belong therefore to the PTLV-3 type. A fourth HTLV type (HTLV-4) was also discovered in the same geographical area. Current studies are aimed at determining the prevalence, distribution and modes of transmission of these viruses as well as their possible association with human diseases. Furthermore, molecular characterization of their viral transactivator Tax is ongoing in order to look for possible oncogenic properties.


PLOS Pathogens | 2009

NRP/Optineurin Cooperates with TAX1BP1 to potentiate the activation of NF-kappaB by human T-lymphotropic virus type 1 tax protein.

Chloé Journo; Josina Côrte-Real Filipe; Frédégonde About; Sébastien Alain Chevalier; Philippe V. Afonso; John N. Brady; David Flynn; Frédéric Tangy; Alain Israël; Pierre-Olivier Vidalain; Renaud Mahieux; Robert Weil

Nuclear factor (NF)-κB is a major survival pathway engaged by the Human T-Lymphotropic Virus type 1 (HTLV-1) Tax protein. Tax1 activation of NF-κB occurs predominantly in the cytoplasm, where Tax1 binds NF-κB Essential Modulator (NEMO/IKKγ) and triggers the activation of IκB kinases. Several independent studies have shown that Tax1-mediated NF-κB activation is dependent on Tax1 ubiquitination. Here, we identify by co-immunoprecipitation assays NEMO-Related Protein (NRP/Optineurin) as a binding partner for Tax1 in HTLV-1 infected and Tax1/NRP co-expressing cells. Immunofluorescence studies reveal that Tax1, NRP and NEMO colocalize in Golgi-associated structures. The interaction between Tax1 and NRP requires the ubiquitin-binding activity of NRP and the ubiquitination sites of Tax1. In addition, we observe that NRP increases the ubiquitination of Tax1 along with Tax1-dependent NF-κB signaling. Surprisingly, we find that in addition to Tax1, NRP interacts cooperatively with the Tax1 binding protein TAX1BP1, and that NRP and TAX1BP1 cooperate to modulate Tax1 ubiquitination and NF-κB activation. Our data strongly suggest for the first time that NRP is a critical adaptor that regulates the assembly of TAX1BP1 and post-translationally modified forms of Tax1, leading to sustained NF-κB activation.


Journal of Biological Chemistry | 2014

Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein * □

Elizabeth Jaworski; Aarthi Narayanan; Rachel Van Duyne; Shabana Shabbeer-Meyering; Sergey Iordanskiy; Mohammed Saifuddin; Ravi Das; Philippe V. Afonso; Gavin Sampey; Myung Ah Chung; Anastas Popratiloff; Bindesh Shrestha; Mohit Sehgal; Pooja Jain; Akos Vertes; Renaud Mahieux; Fatah Kashanchi

Background: Extracellular exosomes contain various functional elements. Results: Exosomal Tax protein causes phenotypic changes in uninfected cells. Conclusion: Exosomes may play critical roles in extracellular delivery of oncogenic material derived from HTLV-1-infected cells. Significance: Exosomal delivery of Tax and other putative oncogenic components produced during HTLV-1 infection potentially contributes to pathogenesis of adult T-cell leukemia, myelopathy, or tropical spastic paraparesis. Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells.


Virology | 2013

HTLV-3/4 and simian foamy retroviruses in humans: Discovery, epidemiology, cross-species transmission and molecular virology

Antoine Gessain; Réjane Rua; Edouard Betsem; Jocelyn Turpin; Renaud Mahieux

Abstract Non-human primates are considered to be likely sources of viruses that can infect humans and thus pose a significant threat to human population. This is well illustrated by some retroviruses, as the simian immunodeficiency viruses and the simian T lymphotropic viruses, which have the ability to cross-species, adapt to a new host and sometimes spread. This leads to a pandemic situation for HIV-1 or an endemic one for HTLV-1. Here, we present the available data on the discovery, epidemiology, cross-species transmission and molecular virology of the recently discovered HTLV-3 and HTLV-4 deltaretroviruses, as well as the simian foamy retroviruses present in different human populations at risk, especially in central African hunters. We discuss also the natural history in humans of these retroviruses of zoonotic origin (magnitude and geographical distribution, possible inter-human transmission). In Central Africa, the increase of the bushmeat trade during the last decades has opened new possibilities for retroviral emergence in humans, especially in immuno-compromised persons.


The Journal of Infectious Diseases | 1997

Demographic, Ethnic, and Geographic Differences between Human T Cell Lymphotropic Virus (HTLV) Type I-Seropositive Carriers and Persons with HTLV-I Gag-Indeterminate Western Blots in Central Africa

Philippe Mauclère; Jean-Yves Le Hesran; Renaud Mahieux; R. Salla; Jermie Mfoupouendoun; Emmanuel Tina Abada; Jacques Millan; Antoine Gessain

Using stringent Western blot (WB) criteria, human T cell lymphotropic virus (HTLV) type I seroprevalence among 3783 persons from representative rural populations of Cameroon averaged 1.1% and was higher in females (1.5%) and in Pygmies (2.0%), increasing with age. Furthermore, an HTLV-I Gag-indeterminate WB profile (HGIP), exhibiting strong reactivities to p19, p26, p28, p32, p36, and pr 53 but lacking both p24 and env reactivity, was observed in 1.6% of the same populations. The prevalence of the HGIP was similar between males and females, did not increase with age, and appeared to cluster in tropical forests of southern Cameroon, especially among Pygmies (reaching 4%). These contrasting epidemiologic features, together with the lack of detection by polymerase chain reaction of HTLV-I sequences in the peripheral blood mononuclear cells of the persons with HGIP, strongly suggest that such a WB profile does not appear to reflect an HTLV-I-related viral infection but possibly an environmental (viral or parasitic) factor endemic in tropical rain forest areas.

Collaboration


Dive into the Renaud Mahieux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chloé Journo

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John N. Brady

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Bazarbachi

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandrine Alais

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge