Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renaud Scheifler is active.

Publication


Featured researches published by Renaud Scheifler.


Environmental Pollution | 2010

Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria.

Samuel Maas; Renaud Scheifler; Mohamed Benslama; Nadia Crini; Eric Lucot; Zahra Brahmia; Slim Benyacoub; Patrick Giraudoux

As part of a larger program aiming at assessing transfer and effects of metals in food webs, this work studied the spatial distribution of Cd, Cr, Cu, Pb, and Zn in 101 sub-surface soils, systematically sampled (1 x 1 km regular grid) over a large area around Annaba, the fourth most-populated city of Algeria. Cd and Cr exhibited only one abnormally high value, with all other concentrations being close to pedogeological background. Some places in the centre of the city were polluted by Pb (up to 823 mg kg(-1)), probably due to aerial deposition from gasoline exhausts. Zn never exceeded regulatory limits over the whole sampling area. Cu was the only element for which a spatial autocorrelation occurred. A spatial interpolation by cokriging allowed the identification of agricultural activities as the main Cu pollution source. Our approach revealed various anthropogenic pollution sources, more efficiently for large-scale patterns than for local abnormalities.


Chemosphere | 2002

Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens.

Renaud Scheifler; A. Gomot-de Vaufleury; M.-L. Toussaint; P.-M. Badot

The transfer and the toxic effects of Cd were studied in an experimental food chain involving the snail Helix aspersa as prey organism and one of its natural predators, the carabid beetle Chrysocarabus splendens. Juvenile snails were fed plant-based food enriched with 0, 10, 50 and 100 microg g(-1) of Cd, then were offered as prey to beetle larvae from egg hatching to pupation stage. Cd concentrations in snail tissues increased with increasing Cd concentration in food and with duration of exposure. Bioaccumulation factors ranged from 1.87 to 3.39, showing that H. aspersa snails, even in their early life stages, belong to macroconcentrator species for Cd. No significant reduction of snail consumption by beetles was found in exposed groups. Cd concentrations in beetle larvae remained very low (lower than 1 microg g(-1) for all groups), demonstrating a very effective regulation capacity in beetle larvae. However, Cd concentrations in highest exposed groups were higher than those found in control groups. Cd contents in adult beetles were lower than in larvae, showing a loss of Cd during metamorphosis. Despite the low Cd concentrations found in beetles, their exposure to Cd contaminated snails led to 31% of mortality, which occurred only during pupation and for the highest exposure level. No clear sublethal effects were found. These results showed that snails inhabiting heavily polluted areas may represent a risk of secondary poisoning for predatory invertebrates and provided quantitative data on the transfer of Cd between two compartments of a terrestrial food chain.


Chemosphere | 2010

Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife

Clémentine Fritsch; Patrick Giraudoux; Michaël Cœurdassier; Francis Douay; Francis Raoul; Christelle Pruvot; Christophe Waterlot; Annette de Vaufleury; Renaud Scheifler

The spatial distribution of total and CaCl(2)-extracted Cd, Pb and Zn concentrations in smelter-impacted soils was investigated over a polluted site (40 km(2)) in Northern France. The study was conducted on 262 soils sampled in woody habitats. Total and extracted concentrations of trace metals (TMs) rose up to 2402 and 59.5 mg kg(-1) for Cd, 41 960 and 13.7 mg kg(-1) for Pb, 38 760 and 143.0 mg kg(-1) for Zn, respectively. The spatial dependence of both total and extracted concentrations showed a high spatial auto-correlation and ordinary kriging was used to predict soil concentrations. Investigating which variables influenced metal concentrations and their spatial distribution, we found that total concentrations mostly depended on the distance from the smelter, the wind and the organic carbon, while extracted concentrations were mainly modulated by the pH. Conditionally to those variables, other soil properties and landscape characteristics influenced both total and extracted concentrations. We conclude that total and extracted TM concentrations are governed by different processes which act at various spatial ranges: total concentrations are mainly related to input and retention of metals (large scale) whereas extracted concentrations were mainly explained by factors controlling metal solubility in soils (local scale). Spatial distributions of total and extracted TMs differed over the area, which should be considered for risk assessment. Maps of risk based on the US EPAs Eco-SSLs (for plants, invertebrates and vertebrates) were realized, showing that wildlife may be at risk but that the relevance of Eco-SSL values is questionable.


Environmental Toxicology and Chemistry | 2008

Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail Helix aspersa (Gastropoda, Pulmonata)†

Florian Hispard; D. Schuler; Annette de Vaufleury; Renaud Scheifler; Pierre-Marie Badot; Reinhard Dallinger

The aim of the present work was to study the effect of Cd2+ exposure on metallothionein (MT) induction and on the distribution of metals (Cd, Cu, and Zn) in the terrestrial pulmonate Helix aspersa. In particular, the soluble and nonsoluble pools of the accumulated metals and their tissue distribution in uncontaminated and contaminated edible snails were investigated after a two-week exposure to Cd2+. In the soluble cytosolic pool of the midgut gland of H. aspersa, three metal-specific putative MT isoforms were separated following a fractionation protocol with diethylaminoethyl cellulose, size-exclusion chromatography, ultrafiltration, and reversed-phase high-performance liquid chromatography (RP-HPLC). Interestingly, one of the above isoforms seems to bind both Cd and Cu, which may in addition mobilize, after induction by Cd2+, some of the intracellular Cu and, thus, perhaps increase the Cu pool in the cytosolic fraction. The cDNA and its translated amino acid sequence of a Cd2+-binding MT isoform from the snail midgut gland was characterized and attributed to one of the putative MT isoforms obtained by RP-HPLC. The amino acid sequence of this Cd-MT isoform of H. aspersa differed from similar sequences described in other terrestrial pulmonates, such as Helix pomatia or Arianta arbustorum, by only a few amino acids (n = 4 and 8, respectively). That the identified Cd-MT from H. aspersa is inducible by Cd2+ also was shown, chromatographic evidence aside, by a specific polymerase chain reaction protocol on a cDNA basis, which included a noninducible housekeeping gene as a control.


Environmental Toxicology and Chemistry | 2006

How terrestrial snails can be used in risk assessment of soils.

Annette de Vaufleury; Michaël Cœurdassier; Pascal Pandard; Renaud Scheifler; Christiane Lovy; Nadia Crini; Pierre-Marie Badot

Among soil invertebrates, terrestrial snails are herbivorous and detritivorous organisms exposed to polluted soils by both digestive and cutaneous routes. Using laboratory-reared snails (Helix aspersa aspersa), we describe how the effects of contaminants on survival and growth of snails can be evaluated in laboratory bioassays. A national ring test was performed to assess the effect of Cd added to the soil or to the food. The ecotoxicity of sewage sludge also was evaluated. The present results demonstrate that toxicity depends on both the pollutants and the exposure route. Cadmium was sixfold more toxic for snails exposed via food contamination (median effective concentration [EC50], 68-139 microg/g) than via soil contamination (EC50, 534-877 microg/g), whereas the opposite occurred with the sewage sludge (EC50, 55% of sludge in the food and 10% of waste in the soil). A logistic relationship linked growth inhibition and internal Cd concentrations, which can reach 2,000 microg/g in the viscera of snails exposed to 626 microg/g in the food. No clear trend was found between Cu, Zn, Pb, Cr, and Ni concentrations in the sludge and in snail tissues. These data enabled the development of an international standard, which should enhance the use of terrestrial gastropods for both fundamental research and routine risk assessment in the terrestrial environment.


Environmental Pollution | 2010

Responses of wild small mammals to a pollution gradient: host factors influence metal and metallothionein levels.

Clémentine Fritsch; Richard P. Cosson; Michaël Cœurdassier; Francis Raoul; Patrick Giraudoux; Nadia Crini; Annette de Vaufleury; Renaud Scheifler

We investigated how host factors (species, age, gender) modulated Cd, Pb, Zn, and Cu concentrations, metallothionein levels (MTs) and their relationships in 7 sympatric small mammal species along a pollution gradient. Cd concentrations in liver and kidneys increased with age in all species. Age effect on other metals and MTs differs among species. Gender did not influence metal and MT levels except in the bank vole. Three patterns linking internal metal concentrations and MTs were observed along the gradient: a low metal accumulation with a (i) high (wood mouse) or (ii) low (bank vole) level of MTs accompanied by a slight or no increase of MTs with Cd accumulation; (iii) an elevated metal accumulation with a sharp increase of MTs (common and pygmy shrews). In risk assessment and biomonitoring perspectives, we conclude that measurements of MTs and metals might be associated because they cannot be interpreted properly when considered separately.


Conservation Biology | 2014

Unintentional Wildlife Poisoning and Proposals for Sustainable Management of Rodents

Michaël Coeurdassier; Romain Riols; Anouk Decors; Aymeric Mionnet; Fabienne David; Thomas Quintaine; Denis Truchetet; Renaud Scheifler; Patrick Giraudoux

In Europe, bromadiolone, an anticoagulant rodenticide authorized for plant protection, may be applied intensively in fields to control rodents. The high level of poisoning of wildlife that follows such treatments over large areas has been frequently reported. In France, bromadiolone has been used to control water voles (Arvicola terrestris) since the 1980s. Both regulation and practices of rodent control have evolved during the last 15 years to restrict the quantity of poisoned bait used by farmers. This has led to a drastic reduction of the number of cases of poisoned wildlife reported by the French surveillance network SAGIR. During the autumn and winter 2011, favorable weather conditions and high vole densities led to the staging of several hundreds of Red Kites (Milvus milvus) in the Puy-de-Dôme department (central France). At the same time, intensive treatments with bromadiolone were performed in this area. Although no misuse has been mentioned by the authorities following controls, 28 Red Kites and 16 Common Buzzards (Buteo buteo) were found dead during surveys in November and December 2011. For all these birds, poisoning by bromadiolone as the main cause of death was either confirmed or highly suspected. Other observations suggest a possible impact of bromadiolone on the breeding population of Red Kites in this area during the spring 2011. French regulation of vole control for plant protection is currently under revision, and we believe this event calls for more sustainable management of rodent outbreaks. Based on large-scale experiments undertaken in eastern France, we propose that direct control of voles at low density (with trapping or limited chemical treatments) and mechanical destruction of vole tunnels, mole control, landscape management, and predator fostering be included in future regulation because such practices could help resolve conservation and agricultural issues.


PLOS ONE | 2013

Urbanization, Trace Metal Pollution, and Malaria Prevalence in the House Sparrow

Coraline Bichet; Renaud Scheifler; Michaël Cœurdassier; Romain Julliard; Gabriele Sorci; Claire Loiseau

Anthropogenic pollution poses a threat for the environment and wildlife. Trace metals (TMs) are known to have negative effects on haematological status, oxidative balance, and reproductive success in birds. These pollutants particularly increase in concentration in industrialized, urbanized and intensive agricultural areas. Pollutants can also interfere with the normal functioning of the immune system and, as such, alter the dynamics of host-parasite interactions. Nevertheless, the impact of pollution on infectious diseases has been largely neglected in natural populations of vertebrates. Here, we used a large spatial scale monitoring of 16 house sparrow (Passer domesticus) populations to identify environmental variables likely to explain variation in TMs (lead, cadmium, zinc) concentrations in the feathers. In five of these populations, we also studied the potential link between TMs, prevalence of infection with one species of avian malaria, Plasmodium relictum, and body condition. Our results show that lead concentration is associated with heavily urbanized habitats and that areas with large woodland coverage have higher cadmium and zinc feather concentrations. Our results suggest that lead concentration in the feathers positively correlates with P. relictum prevalence, and that a complex relationship links TM concentrations, infection status, and body condition. This is one of the first studies showing that environmental pollutants are associated with prevalence of an infectious disease in wildlife. The mechanisms underlying this effect are still unknown even though it is tempting to suggest that lead could interfere with the normal functioning of the immune system, as shown in other species. We suggest that more effort should be devoted to elucidate the link between pollution and the dynamics of infectious diseases.


Environmental Toxicology and Chemistry | 2007

How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails

Frédéric Gimbert; Martina G. Vijver; Michaël Coeurdassier; Renaud Scheifler; Willie J.G.M. Peijnenburg; Pierre-Marie Badot; Annette de Vaufleury

To understand bioaccumulation kinetics of metals within biota inhabiting industrially contaminated soils, toxicokinetic dynamics and subcellular fractionation were carried out with the terrestrial snail Helix aspersa in a long-term (six-month) laboratory experiment. Accumulation and elimination kinetics were determined for Cd, Pb, and Zn in both viscera and foot of snails and were described accurately by one-compartment models. The subcellular fractions were obtained by sequential centrifugations and were analyzed by isolating metal-rich granules, tissue fragments, and cytosolic fractions. Different fractions showed metal-specific binding capacities that might be useful in identifying the biological significance of accumulated metal levels in snails. Cadmium was retrieved mainly from the cytosolic fraction, where it was stored in the long term and not excreted, thus explaining the linear accumulation patterns. Most of the accumulated Pb was found in the granular fraction, and snails appeared able to excrete these concretions, leading to achievement of a steady state in internal Pb body burdens. Significant levels of Pb, however, were retrieved at the end of the depuration phase and retained in the cell debris fraction. Zinc showed affinities for both cytosolic and granular fractions, leading to intermediate uptake and excretion patterns. The dynamics of the different sequestration forms at the subcellular level support the observed kinetics of metal body burdens and, in association with the determination of uptake fluxes, allow precise assessment of metal accumulation in snails.


Environmental Toxicology and Chemistry | 2006

Transfer of Cd, Cu, Ni, Pb, and Zn in a soil-plant-invertebrate food chain: a microcosm study.

Renaud Scheifler; Annette de Vaufleury; Michaël Cœurdassier; Nadia Crini; Pierre-Marie Badot

The transfer of Cd, Cu, Ni, Pb, and Zn was evaluated in a soil-plant (lettuce, Lactuca sativa)-invertebrate (snail, Helix aspersa) food chain during a microcosm experiment. Two agricultural soils, polluted and unpolluted, were studied. Lettuce was cultivated for eight weeks before introduction of snails into the microcosms (M-snails). In a parallel experiment, snails were exposed to lettuce only (i.e., without soil) in simpler exposure devices called containers (C-snails). Snail exposure duration was eight weeks for both M- and C-snails. No effects on snail survival were found. Both M- and C-snails exposed to polluted soil showed a growth reduction, but only after two weeks of exposure. Time-dependent accumulation in M-snails exposed to the polluted environment showed a regular increase of Cd and Zn concentrations over time and a rapid increase of Pb concentrations within the first two weeks, which then remained stable. Copper and Ni concentrations did not increase during any of the experiments. Concentrations in M- and C-snails were compared to estimate the relative contribution of soil and plant to the total bioaccumulation. The results suggest that the soil contribution may be higher than 80% for Pb, from 30 to 60% for Zn, and from 2 to 40% for Cd.

Collaboration


Dive into the Renaud Scheifler's collaboration.

Top Co-Authors

Avatar

Annette de Vaufleury

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Clémentine Fritsch

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patrick Giraudoux

Institut Universitaire de France

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Raoul

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Nadia Crini

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Frédéric Gimbert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Coline Druart

University of Franche-Comté

View shared research outputs
Researchain Logo
Decentralizing Knowledge