Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where René A. J. Janssen is active.

Publication


Featured researches published by René A. J. Janssen.


Journal of the American Chemical Society | 2011

Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices

Hugo Bronstein; Zhuoying Chen; Raja Shahid Ashraf; Weimin Zhang; Junping Du; James R. Durrant; Pabitra Shakya Tuladhar; Kigook Song; Scott E. Watkins; Yves Geerts; Mm Martijn Wienk; René A. J. Janssen; Thomas D. Anthopoulos; Henning Sirringhaus; Martin Heeney; Iain McCulloch

We report the synthesis and polymerization of a novel thieno[3,2-b]thiophene-diketopyrrolopyrrole-based monomer. Copolymerization with thiophene afforded a polymer with a maximum hole mobility of 1.95 cm(2) V(-1) s(-1), which is the highest mobility from a polymer-based OFET reported to date. Bulk-heterojunction solar cells comprising this polymer and PC(71)BM gave a power conversion efficiency of 5.4%.


Journal of the American Chemical Society | 2008

Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends

Dirk Veldman; Özlem İpek; Stefan C. J. Meskers; Jörgen Sweelssen; Marc M. Koetse; Sjoerd C. Veenstra; Jan Kroon; Ss Svetlana van Bavel; Joachim Loos; René A. J. Janssen

The electro-optical properties of thin films of electron donor-acceptor blends of a fluorene copolymer (PF10TBT) and a fullerene derivative (PCBM) were studied. Transmission electron microscopy shows that in these films nanocrystalline PCBM clusters are formed at high PCBM content. For all concentrations, a charge transfer (CT) transition is observed with absorption spectroscopy, photoluminescence, and electroluminescence. The CT emission is used as a probe to investigate the dissociation of CT excited states at the donor-acceptor interface in photovoltaic devices, as a function of an applied external electric field and PCBM concentration. We find that the maximum of the CT emission shifts to lower energy and decreases in intensity with higher PCBM content. We explain the red shift of the emission and the lowering of the open-circuit voltage (V(OC)) of photovoltaic devices prepared from these blends with the higher relative permittivity of PCBM (epsilon(r) = 4.0) compared to that of the polymer (epsilon(r) = 3.4), stabilizing the energy (E(CT)) of CT states and of the free charge carriers in blends with higher PCBM concentration. We show that the CT state has a short decay time (tau = ca. 4 ns) that is reduced by the application of an external electric field or with increasing PCBM content. The field-induced quenching can be explained quantitatively with the Onsager-Braun model for the dissociation of the CT states when including a high electron mobility in nanocrystalline PCBM clusters. Furthermore, photoinduced absorption spectroscopy shows that increasing the PCBM concentration reduces the yield of neutral triplet excitons forming via electron-hole recombination, and increases the lifetime of radical cations. The presence of nanocrystalline domains with high local carrier mobility of at least one of the two components in an organic heterojunction may explain efficient dissociation of CT states into free charge carriers.


Nature Materials | 2009

The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells

Stefan D. Oosterhout; Mm Martijn Wienk; Ss Svetlana van Bavel; Ralf Thiedmann; L. Jan Anton Koster; J Jan Gilot; Joachim Loos; Volker Schmidt; René A. J. Janssen

The efficiency of polymer solar cells critically depends on the intimacy of mixing of the donor and acceptor semiconductors used in these devices to create charges and on the presence of unhindered percolation pathways in the individual components to transport holes and electrons. The visualization of these bulk heterojunction morphologies in three dimensions has been challenging and has hampered progress in this area. Here, we spatially resolve the morphology of 2%-efficient hybrid solar cells consisting of poly(3-hexylthiophene) as the donor and ZnO as the acceptor in the nanometre range by electron tomography. The morphology is statistically analysed for spherical contact distance and percolation pathways. Together with solving the three-dimensional exciton-diffusion equation, a consistent and quantitative correlation between solar-cell performance, photophysical data and the three-dimensional morphology has been obtained for devices with different layer thicknesses that enables differentiating between generation and transport as limiting factors to performance.


Advanced Materials | 2013

Factors Limiting Device Efficiency in Organic Photovoltaics

René A. J. Janssen; Jenny Nelson

The power conversion efficiency of the most efficient organic photovoltaic (OPV) cells has recently increased to over 10%. To enable further increases, the factors limiting the device efficiency in OPV must be identified. In this review, the operational mechanism of OPV cells is explained and the detailed balance limit to photovoltaic energy conversion, as developed by Shockley and Queisser, is outlined. The various approaches that have been developed to estimate the maximum practically achievable efficiency in OPV are then discussed, based on empirical knowledge of organic semiconductor materials. Subsequently, approaches made to adapt the detailed balance theory to incorporate some of the fundamentally different processes in organic solar cells that originate from using a combination of two complementary, donor and acceptor, organic semiconductors using thermodynamic and kinetic approaches are described. The more empirical formulations to the efficiency limits provide estimates of 10-12%, but the more fundamental descriptions suggest limits of 20-24% to be reachable in single junctions, similar to the highest efficiencies obtained for crystalline silicon p-n junction solar cells. Closing this gap sets the stage for future materials research and development of OPV.


Journal of the American Chemical Society | 2012

Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control

Weiwei Li; W. S. Christian Roelofs; Mm Martijn Wienk; René A. J. Janssen

A series of diketopyrrolopyrrole (DPP)-based small band gap polymers has been designed and synthesized by Suzuki or Stille polymerization for use in polymer solar cells. The new polymers contain extended aromatic π-conjugated segments alternating with the DPP units and are designed to increase the free energy for charge generation to overcome current limitations in photocurrent generation of DPP-based polymers. In optimized solar cells with [6,6]phenyl-C(71)-butyric acid methyl ester ([70]PCBM) as acceptor, the new DPP-polymers provide significantly enhanced external and internal quantum efficiencies for conversion of photons into collected electrons. This provides short-circuit current densities in excess of 16 mA cm(-2), higher than obtained so far, with power conversion efficiencies of 5.8% in simulated solar light. We analyze external and internal photon to collected electron quantum efficiencies for the new polymers as a function of the photon energy loss, defined as the offset between optical band gap and open circuit voltage, and compare the results to those of some of the best DPP-based polymers solar cells reported in the literature. We find that for the best solar cells there is an empirical relation between quantum efficiency and photon energy loss that presently limits the power conversion efficiency in these devices.


Journal of the American Chemical Society | 2015

Deep Absorbing Porphyrin Small Molecule for High-Performance Organic Solar Cells with Very Low Energy Losses

Ke Gao; Lisheng Li; Tianqi Lai; Liangang Xiao; Yuan Huang; Fei Huang; Junbiao Peng; Yong Cao; Feng Liu; Thomas P. Russell; René A. J. Janssen; Xiaobin Peng

We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.


Advanced Materials | 2014

Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor

Weiwei Li; W. S. Christian Roelofs; Mathieu Turbiez; Mm Martijn Wienk; René A. J. Janssen

A new class of diketopyrrolopyrrole conjugated acceptor polymer incorporating thiazoles with low-lying energy levels, high electron mobility, and broad absorption to the near infrared region provides a power conversion efficiency of 2.9% in solar cells with a second diketopyrrolo-pyrrole polymer as the donor.


Journal of the American Chemical Society | 2010

A Unifying Model for the Operation of Light-Emitting Electrochemical Cells

Stephan van Reenen; Piotr Matyba; Andrzej Dzwilewski; René A. J. Janssen; Ludvig Edman; M Martijn Kemerink

The application of doping in semiconductors plays a major role in the high performances achieved to date in inorganic devices. In contrast, doping has yet to make such an impact in organic electronics. One organic device that does make extensive use of doping is the light-emitting electrochemical cell (LEC), where the presence of mobile ions enables dynamic doping, which enhances carrier injection and facilitates relatively large current densities. The mechanism and effects of doping in LECs are, however, still far from being fully understood, as evidenced by the existence of two competing models that seem physically distinct: the electrochemical doping model and the electrodynamic model. Both models are supported by experimental data and numerical modeling. Here, we show that these models are essentially limits of one master model, separated by different rates of carrier injection. For ohmic nonlimited injection, a dynamic p-n junction is formed, which is absent in injection-limited devices. This unification is demonstrated by both numerical calculations and measured surface potentials as well as light emission and doping profiles in operational devices. An analytical analysis yields an upper limit for the ratio of drift and diffusion currents, having major consequences on the maximum current density through this type of device.


Journal of the American Chemical Society | 2016

High performance all-polymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing

Zhaojun Li; Xiaofeng Xu; Wei Zhang; Xiangyi Meng; Wei Ma; Arkady Yartsev; Olle Inganäs; Mats R. Andersson; René A. J. Janssen; Ergang Wang

Growing interests have been devoted to the design of polymer acceptors as potential replacement for fullerene derivatives for high-performance all polymer solar cells (all-PSCs). One key factor that is limiting the efficiency of all-PSCs is the low fill factor (FF) (normally <0.65), which is strongly correlated with the mobility and film morphology of polymer:polymer blends. In this work, we find a facile method to modulate the crystallinity of the well-known naphthalene diimide (NDI) based polymer N2200, by replacing a certain amount of bithiophene (2T) units in the N2200 backbone by single thiophene (T) units and synthesizing a series of random polymers PNDI-Tx, where x is the percentage of the single T. The acceptor PNDI-T10 is properly miscible with the low band gap donor polymer PTB7-Th, and the nanostructured blend promotes efficient exciton dissociation and charge transport. Solvent annealing (SA) enables higher hole and electron mobilities, and further suppresses the bimolecular recombination. As expected, the PTB7-Th:PNDI-T10 solar cells attain a high PCE of 7.6%, which is a 2-fold increase compared to that of PTB7-Th:N2200 solar cells. The FF of 0.71 reaches the highest value among all-PSCs to date. Our work demonstrates a rational design for fine-tuned crystallinity of polymer acceptors, and reveals the high potential of all-PSCs through structure and morphology engineering of semicrystalline polymer:polymer blends.


Advanced Materials | 2011

Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells

L. Jan Anton Koster; M Martijn Kemerink; Mm Martijn Wienk; K Klara Maturová; René A. J. Janssen

We present a new experimental technique that affords direct quantification of the fraction of charge carriers lost in poly(3-hexylthiophene): fullerene solar cells by bimolecular recombination. Depending on annealing conditions up to 17% of carriers recombine bimolecularly under solar illumination. We explain our findings with a closed analytical expression for the photocurrent generated by an organic solar cell.

Collaboration


Dive into the René A. J. Janssen's collaboration.

Top Co-Authors

Avatar

Mm Martijn Wienk

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan C. J. Meskers

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

E. W. Meijer

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacobus J. van Franeker

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Weiwei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Albertus P. H. J. Schenning

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bea M. W. Langeveld-Voss

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Edwin H. A. Beckers

Eindhoven University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge