René C.W. Mandl
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by René C.W. Mandl.
Human Brain Mapping | 2009
Martijn P. van den Heuvel; René C.W. Mandl; René S. Kahn; Hilleke E. Hulshoff Pol
During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009.
The Journal of Neuroscience | 2010
Martijn P. van den Heuvel; René C.W. Mandl; Cornelis J. Stam; René S. Kahn; Hilleke E. Hulshoff Pol
Brain regions are not independent. They are interconnected by white matter tracts, together forming one integrative complex network. The topology of this network is crucial for efficient information integration between brain regions. Here, we demonstrate that schizophrenia involves an aberrant topology of the structural infrastructure of the brain network. Using graph theoretical analysis, complex structural brain networks of 40 schizophrenia patients and 40 human healthy controls were examined. Diffusion tensor imaging was used to reconstruct the white matter connections of the brain network, with the strength of the connections defined as the level of myelination of the tracts as measured through means of magnetization transfer ratio magnetic resonance imaging. Patients displayed a preserved overall small-world network organization, but focusing on specific brain regions and their capacity to communicate with other regions of the brain revealed significantly longer node-specific path lengths (higher L) of frontal and temporal regions, especially of bilateral inferior/superior frontal cortex and temporal pole regions. These findings suggest that schizophrenia impacts global network connectivity of frontal and temporal brain regions. Furthermore, frontal hubs of patients showed a significant reduction of betweenness centrality, suggesting a less central hub role of these regions in the overall network structure. Together, our findings suggest that schizophrenia patients have a less strongly globally integrated structural brain network with a reduced central role for key frontal hubs, resulting in a limited structural capacity to integrate information across brain regions.
JAMA Psychiatry | 2013
Martijn P. van den Heuvel; Olaf Sporns; Guusje Collin; Thomas W. Scheewe; René C.W. Mandl; Wiepke Cahn; Joaquín Goñi; Hilleke E. Hulshoff Pol; René S. Kahn
IMPORTANCE The human brain forms a large-scale structural network of regions and interregional pathways. Recent studies have reported the existence of a selective set of highly central and interconnected hub regions that may play a crucial role in the brains integrative processes, together forming a central backbone for global brain communication. Abnormal brain connectivity may have a key role in the pathophysiology of schizophrenia. OBJECTIVE To examine the structure of the rich club in schizophrenia and its role in global functional brain dynamics. DESIGN Structural diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed in patients with schizophrenia and matched healthy controls. SETTING Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands. PARTICIPANTS Forty-eight patients and 45 healthy controls participated in the study. An independent replication data set of 41 patients and 51 healthy controls was included to replicate and validate significant findings. MAIN OUTCOME(S) AND MEASURES: Measures of rich club organization, connectivity density of rich club connections and connections linking peripheral regions to brain hubs, measures of global brain network efficiency, and measures of coupling between brain structure and functional dynamics. RESULTS Rich club organization between high-degree hub nodes was significantly affected in patients, together with a reduced density of rich club connections predominantly comprising the white matter pathways that link the midline frontal, parietal, and insular hub regions. This reduction in rich club density was found to be associated with lower levels of global communication capacity, a relationship that was absent for other white matter pathways. In addition, patients had an increase in the strength of structural connectivity-functional connectivity coupling. CONCLUSIONS Our findings provide novel biological evidence that schizophrenia is characterized by a selective disruption of brain connectivity among central hub regions of the brain, potentially leading to reduced communication capacity and altered functional brain dynamics.
PLOS ONE | 2008
Martijn P. van den Heuvel; René C.W. Mandl; Hilleke E. Hulshoff Pol
Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
Neuropsychopharmacology | 2007
Neeltje E.M. van Haren; Hilleke E. Hulshoff Pol; Hugo G. Schnack; Wiepke Cahn; René C.W. Mandl; D. Louis Collins; Alan C. Evans; René S. Kahn
Recent volumetric magnetic resonance imaging (MRI) studies have suggested brain volume changes in schizophrenia to be progressive in nature. Whether this is a global process or some brain areas are more affected than others is not known. In a 5-year longitudinal study, MRI whole brain scans were obtained from 96 patients with schizophrenia and 113 matched healthy comparison subjects. Changes over time in focal gray and white matter were measured with voxel-based morphometry throughout the brain. Over the 5-year interval, excessive decreases in gray matter density were found in patients in the left superior frontal area (Brodmann areas 9/10), left superior temporal gyrus (Brodmann area 42), right caudate nucleus, and right thalamus as compared to healthy individuals. Excessive gray matter density decrease in the superior frontal gray matter was related to increased number of hospitalizations, whereas a higher cumulative dose of clozapine and olanzapine during the scan interval was related to lesser decreases in this area. In conclusion, gray matter density loss occurs across the course of the illness in schizophrenia, predominantly in left frontal and temporal cortices. Moreover, the progression in left frontal density loss appears to be related to an increased number of psychotic episodes, with atypical antipsychotic medication attenuating these changes.
The Journal of Neuroscience | 2008
Martijn P. van den Heuvel; René C.W. Mandl; Judith Luigjes; Hilleke E. Hulshoff Pol
The default mode network is a functionally connected network of brain regions that show highly synchronized intrinsic neuronal activation during rest. However, less is known about the structural connections of this network, which could play an important role in the observed functional connectivity patterns. In this study, we examined the microstructural organization of the cingulum tract in relation to the level of resting-state default mode functional synchronization. Resting-state functional magnetic resonance imaging and diffusion tensor imaging data of 45 healthy subjects were acquired on a 3 tesla scanner. Both structural and functional connectivity of the default mode network were examined. In all subjects, the cingulum tract was identified from the total collection of reconstructed tracts to interconnect the precuneus/posterior cingulate cortex and medial frontal cortex, key regions of the default mode network. A significant positive correlation was found between the average fractional anisotropy value of the cingulum tract and the level of functional connectivity between the precuneus/posterior cingulate cortex and medial frontal cortex. Our results suggest a direct relationship between the structural and functional connectivity measures of the default mode network and contribute to the understanding of default mode network connectivity.
The Journal of Neuroscience | 2006
H.E. Hulshoff Pol; H.G. Schnack; Danielle Posthuma; René C.W. Mandl; W.F.C. Baaré; C.J. van Oel; N. E. M. van Haren; D.L. Colins; Alan C. Evans; K. Amunts; U. Bürgel; Karl Zilles; E.J.C. de Geus; Dorret I. Boomsma; R.S. Kahn
Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images of 54 monozygotic and 58 dizygotic twin pairs and 34 of their siblings. For genetic analyses, we used structural equation modeling and voxel-based morphometry. To explore the common genetic origin of focal GM and WM areas with intelligence, we obtained cross-trait/cross-twin correlations in which the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0.55). Intelligence shared a common genetic origin with superior occipitofrontal, callosal, and left optical radiation WM and frontal, occipital, and parahippocampal GM (phenotypic correlations up to 0.35). These findings point to a neural network that shares a common genetic origin with human intelligence.
NeuroImage | 2013
Neda Jahanshad; Peter Kochunov; Emma Sprooten; René C.W. Mandl; Thomas E. Nichols; Laura Almasy; John Blangero; Rachel M. Brouwer; Joanne E. Curran; Greig I. de Zubicaray; Ravi Duggirala; Peter T. Fox; L. Elliot Hong; Bennett A. Landman; Nicholas G. Martin; Katie L. McMahon; Sarah E. Medland; Braxton D. Mitchell; Rene L. Olvera; Charles P. Peterson; Jessika E. Sussmann; Arthur W. Toga; Joanna M. Wardlaw; Margaret J. Wright; Hilleke E. Hulshoff Pol; Mark E. Bastin; Andrew M. McIntosh; Ian J. Deary; Paul M. Thompson; David C. Glahn
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
NeuroImage | 2004
Hilleke E. Hulshoff Pol; Hugo G. Schnack; René C.W. Mandl; Wiepke Cahn; D. Louis Collins; Alan C. Evans; René S. Kahn
Gray matter changes have been demonstrated in several regions in schizophrenia. Particularly, the frontal and temporal cortices and amygdala-hippocampal region have been found decreased in volume and density in magnetic resonance imaging (MRI) studies. These abnormalities may reflect an aberrant neuronal network in schizophrenia, suggesting that white matter fibers connecting these regions may also be affected. However, it is unclear if particular white matter areas are (progressively) affected in schizophrenia and if these are related to the gray matter changes. Focal white matter changes in schizophrenia were studied in whole brain magnetic resonance images acquired from 159 patients with schizophrenia or schizophreniform disorder and 158 healthy comparison subjects using voxel-based morphometry. White matter density changes in the patients with schizophrenia were correlated to gray matter density changes and to illness severity. In the patients with schizophrenia, significant decreases in white matter density were found in the genu and truncus of the corpus callosum in the left and right hemisphere, in the right anterior internal capsule and in the right anterior commissure. No interactions between diagnosis and age were found. Increased illness severity was correlated with low density of the corpus callosum and anterior commissure. Decreased corpus callosum density correlated with decreased density of thalamus, lateral inferior frontal and insular gray matter in patients and controls and with decreased density of medial orbitofrontal and superior temporal gyri in patients. Decreased internal capsule and anterior commissure density correlated with increased caudate, and globus pallidus density in patients and controls. These findings suggest aberrant inter-hemispheric connectivity of anterior cortical and sub-cortical brain regions in schizophrenia, reflecting decreased hemispheric specialisation in schizophrenia.
PLOS ONE | 2010
Esther Verstraete; Martijn P. van den Heuvel; Jan H. Veldink; Niels Blanken; René C.W. Mandl; Hilleke E. Hulshoff Pol; Leonard H. van den Berg
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by motor neuron degeneration. How this disease affects the central motor network is largely unknown. Here, we combined for the first time structural and functional imaging measures on the motor network in patients with ALS and healthy controls. Methodology/Principal Findings Structural measures included whole brain cortical thickness and diffusion tensor imaging (DTI) of crucial motor tracts. These structural measures were combined with functional connectivity analysis of the motor network based on resting state fMRI. Focal cortical thinning was observed in the primary motor area in patients with ALS compared to controls and was found to correlate with disease progression. DTI revealed reduced FA values in the corpus callosum and in the rostral part of the corticospinal tract. Overall functional organisation of the motor network was unchanged in patients with ALS compared to healthy controls, however the level of functional connectedness was significantly correlated with disease progression rate. Patients with increased connectedness appear to have a more progressive disease course. Conclusions/Significance We demonstrate structural motor network deterioration in ALS with preserved functional connectivity measures. The positive correlation between functional connectedness of the motor network and disease progression rate could suggest spread of disease along functional connections of the motor network.