Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where René Dreos is active.

Publication


Featured researches published by René Dreos.


Nucleic Acids Research | 2013

EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era

René Dreos; Giovanna Ambrosini; Rouayda Cavin Périer; Philipp Bucher

The Eukaryotic Promoter Database (EPD), available online at http://epd.vital-it.ch, is a collection of experimentally defined eukaryotic POL II promoters which has been maintained for more than 25 years. A promoter is represented by a single position in the genome, typically the major transcription start site (TSS). EPD primarily serves biologists interested in analysing the motif content, chromatin structure or DNA methylation status of co-regulated promoter subsets. Initially, promoter evidence came from TSS mapping experiments targeted at single genes and published in journal articles. Today, the TSS positions provided by EPD are inferred from next-generation sequencing data distributed in electronic form. Traditionally, EPD has been a high-quality database with low coverage. The focus of recent efforts has been to reach complete gene coverage for important model organisms. To this end, we introduced a new section called EPDnew, which is automatically assembled from multiple, carefully selected input datasets. As another novelty, we started to use chromatin signatures in addition to mRNA 5′tags to locate promoters of weekly expressed genes. Regarding user interfaces, we introduced a new promoter viewer which enables users to explore promoter-defining experimental evidence in a UCSC genome browser window.


Journal of Experimental Botany | 2012

Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids

Debora Gasperini; Andy Greenland; Peter Hedden; René Dreos; Wendy Harwood; Simon Griffiths

Over the next decade, wheat grain production must increase to meet the demand of a fast growing human population. One strategy to meet this challenge is to raise wheat productivity by optimizing plant stature. The Reduced height 8 (Rht8) semi-dwarfing gene is one of the few, together with the Green Revolution genes, to reduce stature of wheat (Triticum aestivum L.), and improve lodging resistance, without compromising grain yield. Rht8 is widely used in dry environments such as Mediterranean countries where it increases plant adaptability. With recent climate change, its use could become increasingly important even in more northern latitudes. In the present study, the characterization of Rht8 was furthered. Morphological analyses show that the semi-dwarf phenotype of Rht8 lines is due to shorter internodal segments along the wheat culm, achieved through reduced cell elongation. Physiological experiments show that the reduced cell elongation is not due to defective gibberellin biosynthesis or signalling, but possibly to a reduced sensitivity to brassinosteroids. Using a fine-resolution mapping approach and screening 3104 F2 individuals of a newly developed mapping population, the Rht8 genetic interval was reduced from 20.5 cM to 1.29 cM. Comparative genomics with model genomes confined the Rht8 syntenic intervals to 3.3 Mb of the short arm of rice chromosome 4, and to 2 Mb of Brachypodium distachyon chromosome 5. The very high resolution potential of the plant material generated is crucial for the eventual cloning of Rht8.


Nucleic Acids Research | 2015

The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools

René Dreos; Giovanna Ambrosini; Rouayda Cavin Périer; Philipp Bucher

We present an update of EPDNew (http://epd.vital-it.ch), a recently introduced new part of the Eukaryotic Promoter Database (EPD) which has been described in more detail in a previous NAR Database Issue. EPD is an old database of experimentally characterized eukaryotic POL II promoters, which are conceptually defined as transcription initiation sites or regions. EPDnew is a collection of automatically compiled, organism-specific promoter lists complementing the old corpus of manually compiled promoter entries of EPD. This new part is exclusively derived from next generation sequencing data from high-throughput promoter mapping experiments. We report on the recent growth of EPDnew, its extension to additional model organisms and its improved integration with other bioinformatics resources developed by our group, in particular the Signal Search Analysis and ChIP-Seq web servers.


PLOS Genetics | 2015

Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth

Debora Gasperini; Aurore Chételat; Ivan F. Acosta; Jonas Goossens; Laurens Pauwels; Alain Goossens; René Dreos; Esteban Alfonso; Edward E. Farmer

Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.


Nucleic Acids Research | 2017

The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms

René Dreos; Giovanna Ambrosini; Romain Groux; Rouaïda Cavin Périer; Philipp Bucher

We present an update of the Eukaryotic Promoter Database EPD (http://epd.vital-it.ch), more specifically on the EPDnew division, which contains comprehensive organisms-specific transcription start site (TSS) collections automatically derived from next generation sequencing (NGS) data. Thanks to the abundant release of new high-throughput transcript mapping data (CAGE, TSS-seq, GRO-cap) the database could be extended to plant and fungal species. We further report on the expansion of the mass genome annotation (MGA) repository containing promoter-relevant chromatin profiling data and on improvements for the EPD entry viewers. Finally, we present a new data access tool, ChIP-Extract, which enables computational biologists to extract diverse types of promoter-associated data in numerical table formats that are readily imported into statistical analysis platforms such as R.


PLOS Computational Biology | 2016

Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters

René Dreos; Giovanna Ambrosini; Philipp Bucher

The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs). However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II selects the TSS in their absence. Here we present a comparative analysis of promoters’ sequence composition and chromatin architecture in five eukaryotic model organisms, which shows the presence of common and unique DNA-encoded features used to organize chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain CPEs, there is a strong correlation between the spread of initiation and the intensity of the 10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters’ primary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of CPEs. We also show that DNA natural variants in the region immediately downstream the TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These findings support the notion that, in addition to CPEs mediated selection, sequence–induced nucleosome positioning could be a common and conserved mechanism of TSS selection in animals.


BMC Genomics | 2016

The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data

Giovanna Ambrosini; René Dreos; Sunil Kumar; Philipp Bucher

BackgroundChIP-seq and related high-throughput chromatin profilig assays generate ever increasing volumes of highly valuable biological data. To make sense out of it, biologists need versatile, efficient and user-friendly tools for access, visualization and itegrative analysis of such data.ResultsHere we present the ChIP-Seq command line tools and web server, implementing basic algorithms for ChIP-seq data analysis starting with a read alignment file. The tools are optimized for memory-efficiency and speed thus allowing for processing of large data volumes on inexpensive hardware. The web interface provides access to a large database of public data. The ChIP-Seq tools have a modular and interoperable design in that the output from one application can serve as input to another one. Complex and innovative tasks can thus be achieved by running several tools in a cascade.ConclusionsThe various ChIP-Seq command line tools and web services either complement or compare favorably to related bioinformatics resources in terms of computational efficiency, ease of access to public data and interoperability with other web-based tools. The ChIP-Seq server is accessible at http://ccg.vital-it.ch/chipseq/.


Genome Research | 2013

Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach

Pablo Meyer; Geoffrey H. Siwo; Danny Zeevi; Eilon Sharon; Raquel Norel; Eran Segal; Gustavo Stolovitzky; Andrew K. Rider; Asako Tan; Richard S. Pinapati; Scott J. Emrich; Nitesh V. Chawla; Michael T. Ferdig; Yi-An Tung; Yong-Syuan Chen; Mei-Ju May Chen; Chien-Yu Chen; Jason M. Knight; Sayed Mohammad Ebrahim Sahraeian; Mohammad Shahrokh Esfahani; René Dreos; Philipp Bucher; Ezekiel Maier; Yvan Saeys; Ewa Szczurek; Alena Myšičková; Martin Vingron; Holger Klein; Szymon M. Kiełbasa; Jeff Knisley

The Gene Promoter Expression Prediction challenge consisted of predicting gene expression from promoter sequences in a previously unknown experimentally generated data set. The challenge was presented to the community in the framework of the sixth Dialogue for Reverse Engineering Assessments and Methods (DREAM6), a community effort to evaluate the status of systems biology modeling methodologies. Nucleotide-specific promoter activity was obtained by measuring fluorescence from promoter sequences fused upstream of a gene for yellow fluorescence protein and inserted in the same genomic site of yeast Saccharomyces cerevisiae. Twenty-one teams submitted results predicting the expression levels of 53 different promoters from yeast ribosomal protein genes. Analysis of participant predictions shows that accurate values for low-expressed and mutated promoters were difficult to obtain, although in the latter case, only when the mutation induced a large change in promoter activity compared to the wild-type sequence. As in previous DREAM challenges, we found that aggregation of participant predictions provided robust results, but did not fare better than the three best algorithms. Finally, this study not only provides a benchmark for the assessment of methods predicting activity of a specific set of promoters from their sequence, but it also shows that the top performing algorithm, which used machine-learning approaches, can be improved by the addition of biological features such as transcription factor binding sites.


Nucleic Acids Research | 2018

MGA repository: a curated data resource for ChIP-seq and other genome annotated data

René Dreos; Giovanna Ambrosini; Romain Groux; Rouayda Cavin Périer; Philipp Bucher

The Mass Genome Annotation (MGA) repository is a resource designed to store published next generation sequencing data and other genome annotation data (such as gene start sites, SNPs, etc.) in a completely standardised format. Each sample has undergone local processing in order the meet the strict MGA format requirements. The original data source, the reformatting procedure and the biological characteristics of the samples are described in an accompanying documentation file manually edited by data curators. 10 model organisms are currently represented: Homo sapiens, Mus musculus, Danio rerio, Drosophila melanogaster, Apis mellifera, Caenorhabditis elegans, Arabidopsis thaliana, Zea mays, Saccharomyces cerevisiae and Schizosaccharomyces pombe. As of today, the resource contains over 24 000 samples. In conjunction with other tools developed by our group (the ChIP-Seq and SSA servers), it allows users to carry out a great variety of analysis task with MGA samples, such as making aggregation plots and heat maps for selected genomic regions, finding peak regions, generating custom tracks for visualizing genomic features in a UCSC genome browser window, or downloading chromatin data in a table format suitable for local processing with more advanced statistical analysis software such as R. Home page: http://ccg.vital-it.ch/mga/.


Proceedings Iwbbio 2014: International Work-Conference On Bioinformatics And Biomedical Engineering, Vols 1 And 2 | 2014

Principles of ChIP-seq Data Analysis Illustrated with Examples

Giovanna Ambrosini; René Dreos; Philipp Bucher

Collaboration


Dive into the René Dreos's collaboration.

Top Co-Authors

Avatar

Philipp Bucher

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Giovanna Ambrosini

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Rouayda Cavin Périer

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Romain Groux

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rouaïda Cavin Périer

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge