Rene E. Harrison
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rene E. Harrison.
Molecular and Cellular Biology | 2003
Rene E. Harrison; Cecilia Bucci; Otilia V. Vieira; Trina A. Schroer; Sergio Grinstein
ABSTRACT Nascent phagosomes must undergo a series of fusion and fission reactions to acquire the microbicidal properties required for the innate immune response. Here we demonstrate that this maturation process involves the GTPase Rab7. Rab7 recruitment to phagosomes was found to precede and to be essential for their fusion with late endosomes and/or lysosomes. Active Rab7 on the phagosomal membrane associates with the effector protein RILP (Rab7-interacting lysosomal protein), which in turn bridges phagosomes with dynein-dynactin, a microtubule-associated motor complex. The motors not only displace phagosomes in the centripetal direction but, strikingly, promote the extension of phagosomal tubules toward late endocytic compartments. Fusion of tubules with these organelles was documented by fluorescence and electron microscopy. Tubule extension and fusion with late endosomes and/or lysosomes were prevented by expression of a truncated form of RILP lacking the dynein-dynactin-recruiting domain. We conclude that full maturation of phagosomes requires the retrograde emission of tubular extensions, which are generated by activation of Rab7, recruitment of RILP, and consequent association of phagosomes with microtubule-associated motors.
Cell | 2005
Nicolas Touret; Paul Paroutis; Mauricio R. Terebiznik; Rene E. Harrison; Sergio Trombetta; Marc Pypaert; Amy Chow; Aimin Jiang; James Shaw; Christopher M. Yip; Hsiao-Ping H. Moore; Nicole N. van der Wel; Diane Houben; Peter J. Peters; Chantal de Chastellier; Ira Mellman; Sergio Grinstein
Phagosomes were traditionally thought to originate from an invagination and scission of the plasma membrane to form a distinct intracellular vacuole. An alternative model implicating the endoplasmic reticulum (ER) as a major component of nascent and maturing phagosomes was recently proposed (Gagnon et al., 2002). To reconcile these seemingly disparate hypotheses, we used a combination of biochemical, fluorescence imaging, and electron microscopy techniques to quantitatively and dynamically assess the contribution of the plasmalemma and of the ER to phagosome formation and maturation. We could not verify even a transient physical continuity between the ER and the plasma membrane, nor were we able to detect a significant contribution of the ER to forming or maturing phagosomes in either macrophages or dendritic cells. Instead, our data indicate that the plasma membrane is the main constituent of nascent and newly formed phagosomes, which are progressively remodeled by fusion with endosomal and eventually lysosomal compartments as phagosomes mature into acidic, degradative organelles.
Molecular and Cellular Biology | 2003
Otilia V. Vieira; Cecilia Bucci; Rene E. Harrison; William S. Trimble; Letizia Lanzetti; Jean Gruenberg; Alan D. Schreiber; Philip D. Stahl; Sergio Grinstein
ABSTRACT Phagosomal biogenesis is central for microbial killing and antigen presentation by leukocytes. However, the molecular mechanisms governing phagosome maturation are poorly understood. We analyzed the role and site of action of phosphatidylinositol 3-kinases (PI3K) and of Rab GTPases in maturation using both professional and engineered phagocytes. Rab5, which is recruited rapidly and transiently to the phagosome, was found to be essential for the recruitment of Rab7 and for progression to phagolysosomes. Similarly, functional PI3K is required for successful maturation. Remarkably, inhibition of PI3K did not preclude Rab5 recruitment to phagosomes but instead enhanced and prolonged it. Moreover, in the presence of PI3K inhibitors Rab5 was found to be active, as deduced from measurements of early endosome antigen 1 binding and by photobleaching recovery determinations. Though their ability to fuse with late endosomes and lysosomes was virtually eliminated by wortmannin, phagosomes nevertheless recruited a sizable amount of Rab7. Moreover, Rab7 recruited to phagosomes in the presence of PI3K antagonists retained the ability to bind its effector, Rab7-interacting lysosomal protein, suggesting that it is functionally active. These findings imply that (i) dissociation of Rab5 from phagosomes requires products of PI3K, (ii) PI3K-dependent effectors of Rab5 are not essential for the recruitment of Rab7 by phagosomes, and (iii) recruitment and activation of Rab7 are insufficient to induce fusion of phagosomes with late endosomes and lysosomes. Accordingly, transfection of constitutively active Rab7 did not bypass the block of phagolysosome formation exerted by wortmannin. We propose that Rab5 activates both PI3K-dependent and PI3K-independent effectors that act in parallel to promote phagosome maturation.
Journal of Biological Chemistry | 1998
Shiwen Zhang; Michael C. Y. Chang; Danuta Zylka; Stefanie Turley; Rene E. Harrison; Eva A. Turley
We have identified two RHAMM (receptor for hyaluronan-mediated motility) isoforms that encode an alternatively spliced exon 4 (Hall, C. L., Yang, B., Yang, X., Zhang, S., Turley, M., Samuel, S., Lange, L. A., Wang, C., Curpen, G. D., Savani, R. C., Greenberg, A. H., and Turley, E. A. (1995) Cell 82, 19–26 and Wang, C., Entwistle, J., Hou, G., Li, Q., and Turley, E. A. (1996) Gene 174, 299–306). One of these, RHAMM variant 4 (RHAMMv4), is transforming when overexpressed and regulates Ras signaling (Hall et al.). Here we note using flow cytometry and confocal analysis that RHAMM isoforms encoding exon 4 occur both on the cell surface and in the cytoplasm. Epitope-tagging experiments indicate that RHAMMv4 occurs only in the cytoplasm. Several observations suggest that both cell surface RHAMM isoforms and RHAMMv4 are involved in regulating extracellular-regulated kinase (ERK) activity. Affinity-purified anti-RHAMM exon 4 antibodies block the ability of platelet-derived growth factor to activate ERK, and these reagents modify the protein tyrosine phosphorylation profile of proteins resulting from treatment with platelet-derived growth factor. A dominant negative form of RHAMMv4 inhibits mutant active Ras activation of ERK and coimmunoprecipitates with both mitogen-activated protein kinase kinase and ERK, suggesting that the intracellular RHAMMv4 acts downstream of Ras, possibly at the level of mitogen-activated protein kinase kinase-ERK interactions. Consistent with this, overexpression of RHAMMv4 constitutively activates ERK. These results identify a novel mechanism for the regulation of the Ras-ERK signaling pathway and suggest that RHAMM plays multiple roles in this regulation.
Journal of Cell Biology | 2010
Ronald S. Flannagan; Rene E. Harrison; Christopher M. Yip; Khuloud Jaqaman; Sergio Grinstein
Rather than passively binding ligands via immunoreceptors, macrophages capture particles by repeated extension of actin-rich protrusions.
Molecular and Cellular Biology | 2004
Otilia V. Vieira; Rene E. Harrison; Cameron C. Scott; Harald Stenmark; David C. Alexander; Jun Liu; Jean Gruenberg; Alan D. Schreiber; Sergio Grinstein
ABSTRACT Pathogenic mycobacteria survive within macrophages by precluding the fusion of phagosomes with late endosomes or lysosomes. Because the molecular determinants of normal phagolysosome formation are poorly understood, the sites targeted by mycobacteria remain unidentified. We found that Hrs, an adaptor molecule involved in protein sorting, associates with phagosomes prior to their fusion with late endosomes or lysosomes. Recruitment of Hrs required the interaction of its FYVE domain with phagosomal phosphatidylinositol 3-phosphate, but two other attachment sites were additionally involved. Depletion of Hrs by use of small interfering RNA impaired phagosomal maturation, preventing the acquisition of lysobisphosphatidic acid and reducing luminal acidification. As a result, the maturation of phagosomes formed in Hrs-depleted cells was arrested at an early stage, characterized by the acquisition and retention of sorting endosomal markers. This phenotype is strikingly similar to that reported to occur in phagosomes of cells infected by mycobacteria. We therefore tested whether Hrs is recruited to phagosomes containing mycobacteria. Hrs associated readily with phagosomes containing inert particles but poorly with mycobacterial phagosomes. Moreover, Hrs was found more frequently in phagosomes containing avirulent Mycobacterium smegmatis than in phagosomes with the more virulent Mycobacterium marinum. These findings suggest that the inability to recruit Hrs contributes to the arrest of phagosomal maturation induced by pathogenic mycobacteria.
Bone | 2011
Noushin Nabavi; Arian Khandani; Anne Camirand; Rene E. Harrison
Exposure to microgravity has been associated with several physiological changes in astronauts, including an osteoporosis-like loss in bone mass. Despite many in vivo and in vitro studies in both microgravity and simulated microgravity conditions, the mechanism for bone loss is still not clear. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to assess bone cell responses. In this work, we conduct a unique investigation of the effects of microgravity on bone-producing osteoblasts and, in parallel, on bone-resorbing osteoclasts. An increase in total number of discrete resorption pits is observed in osteoclasts that experienced microgravity versus ground controls. We further show that osteoblasts exposed to 5 days of microgravity have shorter and wavier microtubules (MTs), smaller and fewer focal adhesions, and thinner cortical actin and stress fibers. Space-flown osteoblasts present extended cell shapes as well as significantly more disrupted and often fragmented or condensed nuclei. The absence of gravitational forces therefore causes both an increase in bone resorption by osteoclasts, and a decrease in osteoblast cellular integrity. The observed effects on both major bone cell types likely accelerate bone loss in microgravity environments, and additionally offer a potential explanation to the development of disuse osteoporosis on Earth.
Journal of Biological Chemistry | 2012
Raed Hanania; He Song Sun; Kewei Xu; Sofia Pustylnik; Sujeeve Jeganathan; Rene E. Harrison
Background: Macrophages robustly secrete MMP-9 upon activation, and mechanisms for active delivery of MMP-9 vesicles to the cell surface have not been described. Results: MMP-9 is packaged into unique ER protein-containing vesicles that associate with microtubule motors in activated macrophages. Conclusion: Macrophage activation requires enhanced microtubule stabilization for rapid secretion of up-regulated MMP-9. Significance: Understanding the nature and mechanisms of intracellular trafficking of MMP-9 is relevant to both immunology and cancer biology fields. As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-γ causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly.
Journal of Biological Chemistry | 2010
Cornelia Tolg; Sara R. Hamilton; Lyndsey Morningstar; Jing Zhang; S. Zhang; Kenneth Virgel N. Esguerra; Patrick G. Telmer; Len G. Luyt; Rene E. Harrison; James B. McCarthy; Eva A. Turley
An oncogenic form of RHAMM (receptor for hyaluronan-mediated motility, mouse, amino acids 163–794 termed RHAMMΔ163) is a cell surface hyaluronan receptor and mitotic spindle protein that is highly expressed in aggressive human cancers. Its regulation of mitotic spindle integrity is thought to contribute to tumor progression, but the molecular mechanisms underlying this function have not previously been defined. Here, we report that intracellular RHAMMΔ163 modifies the stability of interphase and mitotic spindle microtubules through ERK1/2 activity. RHAMM−/− mouse embryonic fibroblasts exhibit strongly acetylated interphase microtubules, multi-pole mitotic spindles, aberrant chromosome segregation, and inappropriate cytokinesis during mitosis. These defects are rescued by either expression of RHAMM or mutant active MEK1. Mutational analyses show that RHAMMΔ163 binds to α- and β-tubulin protein via a carboxyl-terminal leucine zipper, but in vitro analyses indicate this interaction does not directly contribute to tubulin polymerization/stability. Co-immunoprecipitation and pulldown assays reveal complexes of RHAMMΔ163, ERK1/2-MEK1, and α- and β-tubulin and demonstrate direct binding of RHAMMΔ163 to ERK1 via a D-site motif. In vitro kinase analyses, expression of mutant RHAMMΔ163 defective in ERK1 binding in mouse embryonic fibroblasts, and blocking MEK1 activity collectively confirm that the effect of RHAMMΔ163 on interphase and mitotic spindle microtubules is mediated by ERK1/2 activity. Our results suggest a model wherein intracellular RHAMMΔ163 functions as an adaptor protein to control microtubule polymerization during interphase and mitosis as a result of localizing ERK1/2-MEK1 complexes to their tubulin-associated substrates.
Journal of Immunology | 2002
Chunjie Wang; Hisayoshi Hayashi; Rene E. Harrison; Basil Chiu; Jason Chan; Hanne L. Ostergaard; Robert D. Inman; Jan Jongstra; Myron I. Cybulsky; Jenny Jongstra-Bilen
Leukocyte-specific protein 1 (LSP1) is an intracellular filamentous-actin binding protein which modulates cell motility. The cellular process in which LSP1 functions to regulate motility is not yet identified. In this study, we show that LSP1 negatively regulates fMLP-induced polarization and chemotaxis of neutrophils through its function on adhesion via specific integrins. Using LSP1-deficient (Lsp1−/−) mice, we show increased neutrophil migration into mouse knee joints during zymosan-induced acute inflammation, an inflammatory model in which the number of resident synoviocytes are not affected by LSP1-deficiency. In vitro chemotaxis experiments performed by time-lapse videomicroscopy showed that purified Lsp1−/− bone-marrow neutrophils exhibit an increased migration rate toward a gradient of fMLP as compared with wild-type neutrophils. This difference was observed when cells migrated on fibrinogen, but not fibronectin, suggesting a role for LSP1 in modulating neutrophil adhesion by specific integrins. LSP1 is also a negative regulator of fMLP-induced adhesion to fibrinogen or ICAM-1, but not to ICAM-2, VCAM-1, or fibronectin. These results suggest that LSP1 regulates the function of Mac-1 (CD11b/CD18), which binds only to fibrinogen and ICAM-1 among the substrates we tested. fMLP-induced filamentous actin polarization is also increased in the absence of LSP1 when cells were layered on fibrinogen, but not on fibronectin. Our findings suggest that the increased neutrophil recruitment in Lsp1−/− mice during acute inflammation derives from the negative regulatory role of LSP1 on neutrophil adhesion, polarization, and migration via specific integrins, such as Mac-1, which mediate neutrophil responses to chemotactic stimuli.