Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where René Feyereisen is active.

Publication


Featured researches published by René Feyereisen.


Nature | 2011

The genome of Tetranychus urticae reveals herbivorous pest adaptations

Miodrag Grbic; Thomas Van Leeuwen; Richard M. Clark; Stephane Rombauts; Pierre Rouzé; Vojislava Grbic; Edward J. Osborne; Wannes Dermauw; Phuong Cao Thi Ngoc; Félix Ortego; Pedro Hernández-Crespo; Isabel Diaz; M. Martinez; Maria Navajas; Elio Sucena; Sara Magalhães; Lisa M. Nagy; Ryan M. Pace; Sergej Djuranovic; Guy Smagghe; Masatoshi Iga; Olivier Christiaens; Jan A. Veenstra; John Ewer; Rodrigo Mancilla Villalobos; Jeffrey L. Hutter; Stephen D. Hudson; Marisela Vélez; Soojin V. Yi; Jia Zeng

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90u2009megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant–herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae

Wannes Dermauw; Nicky Wybouw; Stephane Rombauts; Björn Menten; John Vontas; Miodrag Grbic; Richard M. Clark; René Feyereisen; Thomas Van Leeuwen

Plants produce a wide range of allelochemicals to defend against herbivore attack, and generalist herbivores have evolved mechanisms to avoid, sequester, or detoxify a broad spectrum of natural defense compounds. Successful arthropod pests have also developed resistance to diverse classes of pesticides and this adaptation is of critical importance to agriculture. To test whether mechanisms to overcome plant defenses predispose the development of pesticide resistance, we examined adaptation of the generalist two-spotted spider mite, Tetranychus urticae, to host plant transfer and pesticides. T. urticae is an extreme polyphagous pest with more than 1,100 documented hosts and has an extraordinary ability to develop pesticide resistance. When mites from a pesticide-susceptible strain propagated on bean were adapted to a challenging host (tomato), transcriptional responses increased over time with ∼7.5% of genes differentially expressed after five generations. Whereas many genes with altered expression belonged to known detoxification families (like P450 monooxygenases), new gene families not previously associated with detoxification in other herbivores showed a striking response, including ring-splitting dioxygenase genes acquired by horizontal gene transfer. Strikingly, transcriptional profiles of tomato-adapted mites resembled those of multipesticide-resistant strains, and adaptation to tomato decreased the susceptibility to unrelated pesticide classes. Our findings suggest key roles for both an expanded environmental response gene repertoire and transcriptional regulation in the life history of generalist herbivores. They also support a model whereby selection for the ability to mount a broad response to the diverse defense chemistry of plants predisposes the evolution of pesticide resistance in generalists.


eLife | 2014

A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

Nicky Wybouw; Wannes Dermauw; Luc Tirry; Christian V. Stevens; Miodrag Grbic; René Feyereisen; Thomas Van Leeuwen

Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide. DOI: http://dx.doi.org/10.7554/eLife.02365.001


Pesticide Biochemistry and Physiology | 2015

Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods.

René Feyereisen; Wannes Dermauw; Thomas Van Leeuwen

The recent accumulation of molecular studies on mutations in insects, ticks and mites conferring resistance to insecticides, acaricides and biopesticides is reviewed. Resistance is traditionally classified by physiological and biochemical criteria, such as target-site insensitivity and metabolic resistance. However, mutations are discrete molecular changes that differ in their intrinsic frequency, effects on gene dosage and fitness consequences. These attributes in turn impact the population genetics of resistance and resistance management strategies, thus calling for a molecular genetic classification. Mutations in structural genes remain the most abundantly described, mostly in genes coding for target proteins. These provide the most compelling examples of parallel mutations in response to selection. Mutations causing upregulation and downregulation of genes, both in cis (in the gene itself) and in trans (in regulatory processes) remain difficult to characterize precisely. Gene duplications and gene disruption are increasingly reported. Gene disruption appears prevalent in the case of multiple, hetero-oligomeric or redundant targets.


BMC Genomics | 2006

Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels

Barat-Houari M; Frédérique Hilliou; Jousset Fx; Sofer L; Emeline Deleury; Rocher J; Marc Ravallec; Galibert L; Pierre Delobel; René Feyereisen; Philippe Fournier; Anne-Nathalie Volkoff

BackgroundGenomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens. In this study, we analyzed transcriptional variations in the two main effectors of the insect immune response, the hemocytes and the fat body, after injection of filter-purified HdIV.ResultsResults show that 24 hours post-injection, about 4% of the 1750 arrayed host genes display changes in their transcript levels with a large proportion (76%) showing a decrease. As a comparison, in S. frugiperda fat body, after injection of the pathogenic JcDNV densovirus, 8 genes display significant changes in their transcript level. They differ from the 7 affected by HdIV and, as opposed to HdIV injection, are all up-regulated. Interestingly, several of the genes that are modulated by HdIV injection have been shown to be involved in lepidopteran innate immunity. Levels of transcripts related to calreticulin, prophenoloxidase-activating enzyme, immulectin-2 and a novel lepidopteran scavenger receptor are decreased in hemocytes of HdIV-injected caterpillars. This was confirmed by quantitative RT-PCR analysis but not observed after injection of heat-inactivated HdIV. Conversely, an increased level of transcripts was found for a galactose-binding lectin and, surprisingly, for the prophenoloxidase subunits. The results obtained suggest that HdIV injection affects transcript levels of genes encoding different components of the host immune response (non-self recognition, humoral and cellular responses).ConclusionThis analysis of the host-polydnavirus interactions by a microarray approach indicates that the presence of HdIV induces, directly or indirectly, variations in transcript levels of specific host genes, changes that could be responsible in part for the alterations observed in the parasitized host physiology. Development of such global approaches will allow a better understanding of the strategies employed by parasites to manipulate their host physiology, and will permit the identification of potential targets of the immunosuppressive polydnaviruses.


Pest Management Science | 2013

Spider mite control and resistance management: does a genome help?

Thomas Van Leeuwen; Wannes Dermauw; Miodrag Grbic; Luc Tirry; René Feyereisen

The complete genome of the two-spotted spider mite, Tetranychus urticae, has been reported. This is the first sequenced genome of a highly polyphagous and resistant agricultural pest. The question as to what the genome offers the community working on spider mite control is addressed.


BMC Biology | 2017

Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species

Stephen L. Pearce; David F. Clarke; Peter D. East; Samia Elfekih; Karl H.J. Gordon; Lars S. Jermiin; Angela McGaughran; John G. Oakeshott; Alexie Papanikolaou; Omaththage P. Perera; Rahul V. Rane; Stephen Richards; Weetek Tay; Tom Walsh; Alisha Anderson; Craig Anderson; Sassan Asgari; Philip G. Board; Anne Bretschneider; Peter M. Campbell; Thomas Chertemps; John T. Christeller; Chris Coppin; Sharon Downes; G Duan; Claire Farnsworth; Robert T. Good; Libin Han; Y. C Han; Klas Hatje

BackgroundHelicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests.ResultsWe find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes.ConclusionsThe extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera’s invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.


Current opinion in insect science | 2018

Does host plant adaptation lead to pesticide resistance in generalist herbivores

Wannes Dermauw; Adam Pym; Chris Bass; Thomas Van Leeuwen; René Feyereisen

Most herbivorous arthropods feed on one or a few closely related plant species; however, certain insect and mite species have a greatly expanded host range. Several of these generalists also show a remarkable propensity to evolve resistance to chemical pesticides. In this review, we ask if the evolution of mechanisms to tolerate the diversity of plant secondary metabolites that generalist herbivores encounter, has pre-adapted them to resist synthetic pesticides. Critical examination of the evidence suggests that a generalist life-style per se is not a predictor of rapid resistance evolution to pesticides. Rather the prevalence of pesticide resistance in generalist herbivores probably reflects their economic importance as pests and thus the strong selection imposed by intensive pesticide use.


BMC Genomics | 2014

Establishment and analysis of a reference transcriptome for Spodoptera frugiperda

Fabrice Legeai; Sylvie Gimenez; Bernard Duvic; Jean-Michel Escoubas; Anne-Sophie Gosselin Grenet; Florence Blanc; François Cousserans; Imène Séninet; Anthony Bretaudeau; Doriane Mutuel; Pierre-Alain Girard; Christelle Monsempes; Ghislaine Magdelenat; Frédérique Hilliou; René Feyereisen; Mylène Ogliastro; Anne-Nathalie Volkoff; Emmanuelle Jacquin-Joly; Emmanuelle d’Alençon; Nicolas Nègre; Philippe Fournier

BackgroundSpodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides.ResultsIn this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35u2009S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family - ribosomal proteins - as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied.ConclusionWe conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.


Environmental Science & Technology | 2018

The Toxicogenome of Hyalella azteca: a model for sediment ecotoxicology and evolutionary toxicology

Helen C. Poynton; Simone Hasenbein; Joshua B. Benoit; Maria S. Sepúlveda; Monica Poelchau; Daniel S.T. Hughes; Shwetha C. Murali; Shuai Chen; Karl M. Glastad; Michael A. D. Goodisman; John H. Werren; Joseph H. Vineis; Jennifer L. Bowen; Markus Friedrich; Jeffery W. Jones; Hugh M. Robertson; René Feyereisen; Alexandra Mechler-Hickson; Nicholas Mathers; Carol Eunmi Lee; John K. Colbourne; Adam D. Biales; J. Spencer Johnston; Gary A. Wellborn; Andrew J. Rosendale; Andrew G. Cridge; Monica Munoz-Torres; Peter A. Bain; Austin Manny; Kaley M. Major

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.

Collaboration


Dive into the René Feyereisen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miodrag Grbic

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicky Wybouw

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Fournier

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge