Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where René G. Feichtinger is active.

Publication


Featured researches published by René G. Feichtinger.


Clinical Cancer Research | 2008

Loss of Complex I due to Mitochondrial DNA Mutations in Renal Oncocytoma

Johannes A. Mayr; David Meierhofer; Franz A. Zimmermann; René G. Feichtinger; Christian Kögler; Manfred Ratschek; Nikolaus Schmeller; Wolfgang Sperl; Barbara Kofler

Purpose: Many solid tumors exhibit abnormal aerobic metabolism characterized by increased glycolytic capacity and decreased cellular respiration. Recently, mutations in the nuclear encoded mitochondrial enzymes fumarate hydratase and succinate dehydrogenase have been identified in certain tumor types, thus demonstrating a direct link between mitochondrial energy metabolism and tumorigenesis. Although mutations in the mitochondrial genome (mitochondrial DNA, mtDNA) also can affect aerobic metabolism and mtDNA alterations are frequently observed in tumor cells, evidence linking respiratory chain deficiency in a specific tumor type to a specific mtDNA mutation has been lacking. Experimental Design: To identify mitochondrial alterations in oncocytomas, we investigated the activities of respiratory chain enzymes and sequenced mtDNA in 15 renal oncocytoma tissues. Results: Here, we show that loss of respiratory chain complex I (NADH/ubiquinone oxidoreductase) is associated with renal oncocytoma. Enzymatic activity of complex I was undetectable or greatly reduced in the tumor samples (n = 15). Blue Native gel electrophoresis of the multisubunit enzyme complex revealed a lack of assembled complex I. Mutation analysis of the mtDNA showed frame-shift mutations in the genes of either subunit ND1, ND4, or ND5 of complex I in 9 of the 15 tumors. Conclusion: Our data indicate that isolated loss of complex I is a specific feature of renal oncocytoma and that this deficiency is frequently caused by somatic mtDNA mutations.


Journal of Inherited Metabolic Disease | 2014

Lipoic acid biosynthesis defects

Johannes A. Mayr; René G. Feichtinger; Frederic Tort; Antonia Ribes; Wolfgang Sperl

Lipoate is a covalently bound cofactor essential for five redox reactions in humans: in four 2-oxoacid dehydrogenases and the glycine cleavage system (GCS). Two enzymes are from the energy metabolism, α-ketoglutarate dehydrogenase and pyruvate dehydrogenase; and three are from the amino acid metabolism, branched-chain ketoacid dehydrogenase, 2-oxoadipate dehydrogenase, and the GCS. All these enzymes consist of multiple subunits and share a similar architecture. Lipoate synthesis in mitochondria involves mitochondrial fatty acid synthesis up to octanoyl-acyl-carrier protein; and three lipoate-specific steps, including octanoic acid transfer to glycine cleavage H protein by lipoyl(octanoyl) transferase 2 (putative) (LIPT2), lipoate synthesis by lipoic acid synthetase (LIAS), and lipoate transfer by lipoyltransferase 1 (LIPT1), which is necessary to lipoylate the E2 subunits of the 2-oxoacid dehydrogenases. The reduced form dihydrolipoate is reactivated by dihydrolipoyl dehydrogenase (DLD). Mutations in LIAS have been identified that result in a variant form of nonketotic hyperglycinemia with early-onset convulsions combined with a defect in mitochondrial energy metabolism with encephalopathy and cardiomyopathy. LIPT1 deficiency spares the GCS, and resulted in a combined 2-oxoacid dehydrogenase deficiency and early death in one patient and in a less severely affected individual with a Leigh-like phenotype. As LIAS is an iron–sulphur-cluster-dependent enzyme, a number of recently identified defects in mitochondrial iron–sulphur cluster synthesis, including NFU1, BOLA3, IBA57, GLRX5 presented with deficiency of LIAS and a LIAS-like phenotype. As in DLD deficiency, a broader clinical spectrum can be anticipated for lipoate synthesis defects depending on which of the affected enzymes is most rate limiting.


BMC Cancer | 2010

Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma

René G. Feichtinger; Franz A. Zimmermann; Johannes A. Mayr; Daniel Neureiter; Cornelia Hauser-Kronberger; Freimut H. Schilling; Neil Jones; Wolfgang Sperl; Barbara Kofler

BackgroundSuccinate dehydrogenase (SDH) has been associated with carcinogenesis in pheochromocytoma and paraganglioma. In the present study we investigated components of the oxidative phosphorylation system in human neuroblastoma tissue samples.MethodsSpectrophotometric measurements, immunohistochemical analysis and Western blot analysis were used to characterize the aerobic mitochondrial energy metabolism in neuroblastomas (NB).ResultsCompared to mitochondrial citrate synthase, SDH activity was severely reduced in NB (n = 14) versus kidney tissue. However no pathogenic mutations could be identified in any of the four subunits of SDH. Furthermore, no genetic alterations could be identified in the two novel SDH assembly factors SDHAF1 and SDH5. Alterations in genes encoding nfs-1, frataxin and isd-11 that could lead to a diminished SDH activity have not been detected in NB.ConclusionBecause downregulation of other complexes of the oxidative phosphorylation system was also observed, a more generalized reduction of mitochondrial respiration seems to be present in neuroblastoma in contrast to the single enzyme defect found in hereditary pheochromocytomas.


Glia | 2014

Alterations of oxidative phosphorylation complexes in astrocytomas

René G. Feichtinger; Serge Weis; Johannes A. Mayr; Franz A. Zimmermann; Reinhard Geilberger; Wolfgang Sperl; Barbara Kofler

The shift in cellular energy production from oxidative phosphorylation (OXPHOS) to glycolysis, even under aerobic conditions, called the Warburg effect, is a feature of most solid tumors. The activity levels of OXPHOS complexes and citrate synthase were determined in astrocytomas. A gradual decrease of citrate synthase and OXPHOS complexes was observed depending on tumor grade. In low‐grade astrocytomas (WHO grade II), enzyme activities of citrate synthase, complex I, and complex V were comparable to those of normal brain tissue. A trend to reduced activities was observed for complexes II–IV. In glioblastoma (WHO grade IV), activities of citrate synthase and complexes I–IV were decreased by 56–92% as compared with normal brain. Immunohistochemical staining for porin revealed that the tumorpil of low‐grade astrocytomas displays characteristics of the mitochondria‐rich neuropil of normal brain tissue. In high‐grade tumors (WHO grades III and IV), the tumorpil was characterized by severe morphologic alterations as well as loss of “pilem” structures. Specific alterations of OXPHOS complexes were observed in all astrocytic tumors by immunohistochemical analysis: 80% of astrocytomas exhibited severe deficiency of complex IV; complex I showed a gradual reduction in amount with increasing tumor grade, whereas complex II showed reduced levels only in high‐grade (WHO grade IV) tumors (9/12); complexes III and V did not show significant alterations compared with normal brain tissue. OXPHOS defects were present not only in the cell bodies of tumor cells but also in the pilem structures, indicating that the ramifications/protuberances (tumorpil) in general originate from tumor cells. GLIA 2014;62:514–525


PLOS ONE | 2015

Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model

Raphael Johannes Morscher; Sepideh Aminzadeh-Gohari; René G. Feichtinger; Johannes A. Mayr; Roland Lang; Daniel Neureiter; Wolfgang Sperl; Barbara Kofler

Introduction Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer’s oxidative phosphorylation system. Methods Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Results Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Conclusions Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose that a ketogenic diet and/or calorie restriction should be further evaluated as a possible adjuvant therapy for patients undergoing treatment for neuroblastoma.


Journal of Medical Genetics | 2016

Disturbed mitochondrial and peroxisomal dynamics due to loss of MFF causes Leigh-like encephalopathy, optic atrophy and peripheral neuropathy

Johannes Koch; René G. Feichtinger; Peter Freisinger; Mechthild Pies; Falk Schrödl; Arcangela Iuso; Wolfgang Sperl; Johannes A. Mayr; Holger Prokisch; Tobias B. Haack

Background Mitochondria are dynamic organelles which undergo continuous fission and fusion to maintain their diverse cellular functions. Components of the fission machinery are partly shared between mitochondria and peroxisomes, and inherited defects in two such components (dynamin-related protein (DRP1) and ganglioside-induced differentiation-associated protein 1 (GDAP1)) have been associated with human disease. Deficiency of a third component (mitochondrial fission factor, MFF) was recently reported in one index patient, rendering MFF another candidate disease gene within the expanding field of mitochondrial and peroxisomal dynamics. Here we investigated three new patients from two families with pathogenic mutations in MFF. Methods The patients underwent clinical examination, brain MRI, and biochemical, cytological and molecular analyses, including exome sequencing. Results The patients became symptomatic within the first year of life, exhibiting seizures, developmental delay and acquired microcephaly. Dysphagia, spasticity and optic and peripheral neuropathy developed subsequently. Brain MRI showed Leigh-like patterns with bilateral changes of the basal ganglia and subthalamic nucleus, suggestive of impaired mitochondrial energy metabolism. However, activities of mitochondrial respiratory chain complexes were found to be normal in skeletal muscle. Exome sequencing revealed three different biallelic loss-of-function variants in MFF in both index cases. Western blot studies of patient-derived fibroblasts indicated normal content of mitochondria and peroxisomes, whereas immunofluorescence staining revealed elongated mitochondria and peroxisomes. Furthermore, increased mitochondrial branching and an abnormal distribution of fission-mediating DRP1 were observed. Conclusions Our findings establish MFF loss of function as a cause of disturbed mitochondrial and peroxisomal dynamics associated with early-onset Leigh-like basal ganglia disease. We suggest that, even if laboratory findings are not indicative of mitochondrial or peroxisomal dysfunction, the co-occurrence of optic and/or peripheral neuropathy with seizures warrants genetic testing for MFF mutations.


American Journal of Human Genetics | 2016

Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency

Rikke K.J. Olsen; Eliška Koňaříková; Teresa Anna Giancaspero; Signe Mosegaard; Veronika Boczonadi; Lavinija Mataković; Alice Veauville-Merllié; Caterina Terrile; Thomas Schwarzmayr; Tobias B. Haack; Mari Auranen; Piero Leone; Michele Galluccio; Apolline Imbard; Purificacion Gutierrez-Rios; Johan Palmfeldt; Elisabeth Graf; Christine Vianey-Saban; Marcus Oppenheim; Manuel Schiff; Samia Pichard; Odile Rigal; Angela Pyle; Patrick F. Chinnery; Vassiliki Konstantopoulou; Dorothea Möslinger; René G. Feichtinger; Beril Talim; Haluk Topaloglu; Turgay Coskun

Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.


Orphanet Journal of Rare Diseases | 2014

Sengers syndrome: six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients

Alireza Haghighi; Tobias B. Haack; Mehnaz Atiq; Hassan Mottaghi; Hamidreza Haghighi-Kakhki; Rani A Bashir; Uwe Ahting; René G. Feichtinger; Johannes A. Mayr; Agnès Rötig; Anne-Sophie Lebre; Thomas Klopstock; Andrea Dworschak; Nathan Pulido; Mahmood A Saeed; Nasrollah Saleh-Gohari; Eliška Holzerová; Patrick F. Chinnery; Robert W. Taylor; Holger Prokisch

BackgroundSengers syndrome is an autosomal recessive condition characterized by congenital cataract, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. Mutations in the acylglycerol kinase (AGK) gene have been recently described as the cause of Sengers syndrome in nine families.MethodsWe investigated the clinical and molecular features of Sengers syndrome in seven new families; five families with the severe and two with the milder form.ResultsSequence analysis of AGK revealed compound heterozygous or homozygous predicted loss-of-function mutations in all affected individuals. A total of eight different disease alleles were identified, of which six were novel, homozygous c.523_524delAT (p.Ile175Tyrfs*2), c.424-1G > A (splice site), c.409C > T (p.Arg137*) and c.877 + 3G > T (splice site), and compound heterozygous c.871C > T (p.Gln291*) and c.1035dup (p.Ile346Tyrfs*39). All patients displayed perinatal or early-onset cardiomyopathy and cataract, clinical features pathognomonic for Sengers syndrome. Other common findings included blood lactic acidosis and tachydyspnoea while nystagmus, eosinophilia and cervical meningocele were documented in only either one or two cases. Deficiency of the adenine nucleotide translocator was found in heart and skeletal muscle biopsies from two patients associated with respiratory chain complex I deficiency. In contrast to previous findings, mitochondrial DNA content was normal in both tissues.ConclusionWe compare our findings to those in 21 previously reported AGK mutation-positive Sengers patients, confirming that Sengers syndrome is a clinically recognisable disorder of mitochondrial energy metabolism.


Journal of Inherited Metabolic Disease | 2015

The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders

Wolfgang Sperl; Leanne Fleuren; Peter Freisinger; Tobias B. Haack; Antonia Ribes; René G. Feichtinger; Richard J. Rodenburg; Franz A. Zimmermann; Johannes Koch; Isabel Rivera; Holger Prokisch; Jan A.M. Smeitink; Johannes A. Mayr

Pyruvate oxidation defects (PODs) are among the most frequent causes of deficiencies in the mitochondrial energy metabolism and represent a substantial subset of classical mitochondrial diseases. PODs are not only caused by deficiency of subunits of the pyruvate dehydrogenase complex (PDHC) but also by various disorders recently described in the whole pyruvate oxidation route including cofactors, regulation of PDHC and the mitochondrial pyruvate carrier. Our own patients from 2000 to July 2014 and patients identified by a systematic survey of the literature from 1970 to July 2014 with a pyruvate oxidation disorder and a genetically proven defect were included in the study (n=628). Of these defects 74.2% (n=466) belong to PDHC subunits, 24.5% (n=154) to cofactors, 0.5% (n=3) to PDHC regulation and 0.8% (n=5) to mitochondrial pyruvate import. PODs are underestimated in the field of mitochondrial diseases because not all diagnostic centres include biochemical investigations of PDHC in their routine analysis. Cofactor and transport defects can be missed, if pyruvate oxidation is not measured in intact mitochondria routinely. Furthermore deficiency of the X-chromosomal PDHA1 can be biochemically missed depending on the X-inactivation pattern. This is reflected by an increasing number of patients diagnosed recently by genetic high throughput screening approaches. PDHC deficiency including regulation and import affect mainly the glucose dependent central and peripheral nervous system and skeletal muscle. PODs with combined enzyme defects affect also other organs like heart, lung and liver. The spectrum of clinical presentation of PODs is still expanding. PODs are a therapeutically interesting group of mitochondrial diseases since some can be bypassed by ketogenic diet or treated by cofactor supplementation. PDHC kinase inhibition, chaperone therapy and PGC1α stimulation is still a matter of further investigations.


Molecular Genetics and Metabolism | 2014

Expanding the clinical and molecular spectrum of thiamine pyrophosphokinase deficiency: A treatable neurological disorder caused by TPK1 mutations

Siddharth Banka; Christian de Goede; W.W. Yue; A. A. M. Morris; Beate von Bremen; Kate Chandler; René G. Feichtinger; Claire Hart; Nasaim Khan; Verena Lunzer; Lavinija Mataković; Thorsten Marquardt; Christine Makowski; Holger Prokisch; O. Debus; Kazuto Nosaka; Hemant Sonwalkar; Franz A. Zimmermann; Wolfgang Sperl; Johannes A. Mayr

Thiamine pyrophosphokinase (TPK) produces thiamine pyrophosphate, a cofactor for a number of enzymes, including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase. Episodic encephalopathy type thiamine metabolism dysfunction (OMIM 614458) due to TPK1 mutations is a recently described rare disorder. The mechanism of the disease, its phenotype and treatment are not entirely clear. We present two patients with novel homozygous TPK1 mutations (Patient 1 with p.Ser160Leu and Patient 2 with p.Asp222His). Unlike the previously described phenotype, Patient 2 presented with a Leigh syndrome like non-episodic early-onset global developmental delay, thus extending the phenotypic spectrum of the disorder. We, therefore, propose that TPK deficiency may be a better name for the condition. The two cases help to further refine the neuroradiological features of TPK deficiency and show that MRI changes can be either fleeting or progressive and can affect either white or gray matter. We also show that in some cases lactic acidosis can be absent and 2-ketoglutaric aciduria may be the only biochemical marker. Furthermore, we have established the assays for TPK enzyme activity measurement and thiamine pyrophosphate quantification in frozen muscle and blood. These tests will help to diagnose or confirm the diagnosis of TPK deficiency in a clinical setting. Early thiamine supplementation prevented encephalopathic episodes and improved developmental progression of Patient 1, emphasizing the importance of early diagnosis and treatment of TPK deficiency. We present evidence suggesting that thiamine supplementation may rescue TPK enzyme activity. Lastly, in silico protein structural analysis shows that the p.Ser160Leu mutation is predicted to interfere with TPK dimerization, which may be a novel mechanism for the disease.

Collaboration


Dive into the René G. Feichtinger's collaboration.

Top Co-Authors

Avatar

Johannes A. Mayr

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Sperl

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Barbara Kofler

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Koch

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Peter Freisinger

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manfred Ratschek

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge