René Geurts
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by René Geurts.
Nucleic Acids Research | 2007
Andreas Untergasser; Harm Nijveen; Xiangyu Rao; Ton Bisseling; René Geurts; Jack A.M. Leunissen
Here we present Primer3Plus, a new web interface to the popular Primer3 primer design program as an enhanced alternative for the CGI- scripts that come with Primer3. Primer3 consists of a command line program and a web interface. The web interface is one large form showing all of the possible options. This makes the interface powerful, but at the same time confusing for occasional users. Primer3Plus provides an intuitive user interface using present-day web technologies and has been developed in close collaboration with molecular biologists and technicians regularly designing primers. It focuses on the task at hand, and hides detailed settings from the user until these are needed. We also added functionality to automate specific tasks like designing primers for cloning or step-wise sequencing. Settings and designed primer sequences can be stored locally for later use. Primer3Plus supports a range of common sequence formats, such as FASTA. Finally, primers selected by Primer3Plus can be sent to an order form, allowing tight integration into laboratory ordering systems. Moreover, the open architecture of Primer3Plus allows easy expansion or integration of external software packages. The Primer3Plus Perl source code is available under GPL license from SourceForge. Primer3Plus is available at http://www.bioinformatics.nl/primer3plus.
Plant Physiology | 2006
Jean-François Arrighi; Annick Barre; Besma Ben Amor; Anne Bersoult; Lidia Campos Soriano; Rossana Mirabella; Fernanda de Carvalho-Niebel; Etienne-Pascal Journet; M. Gherardi; Thierry Huguet; René Geurts; Jean Dénarié; Pierre Rougé; Clare Gough
Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysine motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.
Plant Physiology | 2006
Jean-François Arrighi; Annick Barre; Besma Ben Amor; Anne Bersoult; Lidia Campos Soriano; Rossana Mirabella; Fernanda de Carvalho-Niebel; Etienne-Pascal Journet; M. Gherardi; Thierry Huguet; René Geurts; Jean Dénarié; Pierre Rougé; Clare Gough
Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysine motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.
Plant Physiology | 2007
Patrick Smit; Erik Limpens; René Geurts; Elena Fedorova; Elena A. Dolgikh; Clare Gough; Ton Bisseling
Rhizobia secrete nodulation (Nod) factors, which set in motion the formation of nitrogen-fixing root nodules on legume host plants. Nod factors induce several cellular responses in root hair cells within minutes, but also are essential for the formation of infection threads by which rhizobia enter the root. Based on studies using bacterial mutants, a two-receptor model was proposed, a signaling receptor that induces early responses with low requirements toward Nod factor structure and an entry receptor that controls infection with more stringent demands. Recently, putative Nod factor receptors were shown to be LysM domain receptor kinases. However, mutants in these receptors, in both Lotus japonicus (nfr1 and nfr5) and Medicago truncatula (Medicago; nfp), do not support the two-receptor model because they lack all Nod factor-induced responses. LYK3, the putative Medicago ortholog of NFR1, has only been studied by RNA interference, showing a role in infection thread formation. Medicago hair curling (hcl) mutants are unable to form curled root hairs, a step preceding infection thread formation. We identified the weak hcl-4 allele that is blocked during infection thread growth. We show that HCL encodes LYK3 and, thus, that this receptor, besides infection, also controls root hair curling. By using rhizobial mutants, we also show that HCL controls infection thread formation in a Nod factor structure-dependent manner. Therefore, LYK3 functions as the proposed entry receptor, specifically controlling infection. Finally, we show that LYK3, which regulates a subset of Nod factor-induced genes, is not required for the induction of NODULE INCEPTION.
Science | 2011
Rik Op den Camp; Arend Streng; Stéphane De Mita; Qingqin Cao; Elisa Polone; Wei Liu; Jetty S. S. Ammiraju; Dave Kudrna; Rod A. Wing; Andreas Untergasser; Ton Bisseling; René Geurts
Parasponia uses a mycorrhizal signaling receptor essential for arbuscle formation to control rhizobium nodule symbiosis. Rhizobium–root nodule symbiosis is generally considered to be unique for legumes. However, there is one exception, and that is Parasponia. In this nonlegume, the rhizobial nodule symbiosis evolved independently and is, as in legumes, induced by rhizobium Nod factors. We used Parasponia andersonii to identify genetic constraints underlying evolution of Nod factor signaling. Part of the signaling cascade, downstream of Nod factor perception, has been recruited from the more-ancient arbuscular endomycorrhizal symbiosis. However, legume Nod factor receptors that activate this common signaling pathway are not essential for arbuscular endomycorrhizae. Here, we show that in Parasponia a single Nod factor–like receptor is indispensable for both symbiotic interactions. Therefore, we conclude that the Nod factor perception mechanism also is recruited from the widespread endomycorrhizal symbiosis.
The Plant Cell | 2011
W. Liu; Wouter Kohlen; A. Lillo; Op den R. Camp; S. Ivanov; M. Hartog; Erik Limpens; M. Jamil; Cezary Smaczniak; Kerstin Kaufmann; Wei-Cai Yang; Guido Hooiveld; T. Charnikhova; Harro J. Bouwmeester; Ton Bisseling; René Geurts
This work examines the functions of the Medicago truncatula and rice GRAS-type transcription factors NSP1 and NSP2. They were found to be essential for strigolactone synthesis, possibly through direct regulation of DWARF27. Legume GRAS (GAI, RGA, SCR)-type transcription factors NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2 are essential for rhizobium Nod factor-induced nodulation. Both proteins are considered to be Nod factor response factors regulating gene expression after symbiotic signaling. However, legume NSP1 and NSP2 can be functionally replaced by nonlegume orthologs, including rice (Oryza sativa) NSP1 and NSP2, indicating that both proteins are functionally conserved in higher plants. Here, we show that NSP1 and NSP2 are indispensable for strigolactone (SL) biosynthesis in the legume Medicago truncatula and in rice. Mutant nsp1 plants do not produce SLs, whereas in M. truncatula, NSP2 is essential for conversion of orobanchol into didehydro-orobanchol, which is the main SL produced by this species. The disturbed SL biosynthesis in nsp1 nsp2 mutant backgrounds correlates with reduced expression of DWARF27, a gene essential for SL biosynthesis. Rice and M. truncatula represent distinct phylogenetic lineages that split approximately 150 million years ago. Therefore, we conclude that regulation of SL biosynthesis by NSP1 and NSP2 is an ancestral function conserved in higher plants. NSP1 and NSP2 are single-copy genes in legumes, which implies that both proteins fulfill dual regulatory functions to control downstream targets after rhizobium-induced signaling as well as SL biosynthesis in nonsymbiotic conditions.
PLOS Genetics | 2014
Kui Lin; Erik Limpens; Zhonghua Zhang; Sergey Ivanov; Diane G. O. Saunders; Desheng Mu; Erli Pang; Huifen Cao; Hwangho Cha; Tao Lin; Qian Zhou; Yi Shang; Ying Li; Trupti Sharma; Robin van Velzen; Norbert C.A. de Ruijter; Duur K. Aanen; Joe Win; Sophien Kamoun; Ton Bisseling; René Geurts; Sanwen Huang
Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.
The EMBO Journal | 1999
Cathy Albrecht; René Geurts; Ton Bisseling
Most higher plants have the ability to form arbuscular endomycorrhiza (AM); a symbiotic association of the plant root with fungi belonging to the order of Glomales . These fungi grow towards the inner cortical cells of the root where they differentiate into highly branched structures, the arbuscules (Figure 1). In AM symbiosis, the fungus also forms hyphae outside the plant and these provide a connection between the soil and the inner part of the plant and they facilitate the uptake of nutrients such as phosphate (for reviews see: Gianinazzi‐Pearson, 1996; Harrison, 1997). Figure 1. Pea root cortex infected by the mycorrhizal fungus Glomus intraradices ( A ) and a Rhizobium leguminosarum bv viciae induced infection thread in a vetch‐root hair ( B ). The AM fungus has entered the root intercellularly and it has formed an arbuscle [(A), Trypan blue staining]. In contrast, Rhizobium enters its host plant intracellularly via an infection thread [(B), Vetch‐root hair with an infection thread containing R.leguminosarum bv viciae bacteria expressing green fluorescent protein (GFP) (Spaink et al ., 1998)]. In contrast to AM formation, only a few plant species have the ability to interact symbiotically with bacteria of the genera Azorhizobium, Bradyrhizobium, Rhizobium and Sinorhizobium (here collectively called Rhizobium ). This interaction is almost completely restricted to leguminous plants and results in the formation of a completely new organ, the root nodule. In these nodules the bacteria are hosted intracellularly and there they find the ideal environment to reduce atmospheric nitrogen into ammonia, a source of nitrogen which can be used by the plant (for reviews see: Mylona et al ., 1995; Long, 1996). At first glance the interactions of plants with rhizobia and AM fungi seem to have little in common. The induced morphological responses of the host plants are different. Furthermore, both interactions are extremes in …
Plant Journal | 1998
Catherine Albrecht; René Geurts; Frédéric Lapeyrie; Ton Bisseling
We report here that the pea early nodulin genes PsENOD5 and PsENOD12A are induced during the interaction of pea roots and the endomycorrhizal fungus Gigaspora margarita. Using the pea nodulation mutant Sparkle-R25, which is mutated in SYM8, it is shown that SYM8 is essential for the induction of PsENOD5 and PsENOD12Ain pea roots interacting either with Rhizobium or the endomycorrhizal fungus Gigaspora margarita. Our results suggest that mycorrhizal signals activate a signal transduction cascade sharing at least one common step with the Nod factor-activated signal transduction cascade.
The Plant Cell | 2002
René Geurts; Ton Bisseling
Biological nitrogen fixation is a process that can only be performed by certain prokaryotes. In some cases, such bacteria are able to fix nitrogen in a symbiotic relationship with plants. Bacteria of the genera Azorhizobium , Bradyrhizobium , Mesorhizobium , Rhizobium , and Sinorhizobium (