René H. J. Vervuurt
Eindhoven University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by René H. J. Vervuurt.
Nanotechnology | 2016
Adriaan J. M. Mackus; Mj Matthieu Weber; Nick F. W. Thissen; Diana Garcia-Alonso; René H. J. Vervuurt; S Simone Assali; Ageeth A. Bol; Marcel A. Verheijen; Wilhelmus M. M. Kessels
The deposition of Pd and Pt nanoparticles by atomic layer deposition (ALD) has been studied extensively in recent years for the synthesis of nanoparticles for catalysis. For these applications, it is essential to synthesize nanoparticles with well-defined sizes and a high density on large-surface-area supports. Although the potential of ALD for synthesizing active nanocatalysts for various chemical reactions has been demonstrated, insight into how to control the nanoparticle properties (i.e. size, composition) by choosing suitable processing conditions is lacking. Furthermore, there is little understanding of the reaction mechanisms during the nucleation stage of metal ALD. In this work, nanoparticles synthesized with four different ALD processes (two for Pd and two for Pt) were extensively studied by transmission electron spectroscopy. Using these datasets as a starting point, the growth characteristics and reaction mechanisms of Pd and Pt ALD relevant for the synthesis of nanoparticles are discussed. The results reveal that ALD allows for the preparation of particles with control of the particle size, although it is also shown that the particle size distribution is strongly dependent on the processing conditions. Moreover, this paper discusses the opportunities and limitations of the use of ALD in the synthesis of nanocatalysts.
Nanoscale | 2016
Bora Karasulu; René H. J. Vervuurt; Wilhelmus M. M. Kessels; Ageeth A. Bol
Integrating metals and metal oxides with graphene is key in utilizing its extraordinary material properties that are ideal for nanoelectronic and catalyst applications. Atomic layer deposition (ALD) has become a key technique for depositing ultrathin, conformal metal(oxide) films. ALD of metal(oxide) films on graphene, however, remains a genuine challenge due to the chemical inertness of graphene. In this study we address this issue by combining first-principles density functional theory (DFT) simulations with ALD experiments. The focus is on the Pt ALD on graphene, as this hybrid system is very promising for solar and fuel cells, hydrogen technologies, microreactors, and sensors. Here we elucidate the surface reactions underpinning the nucleation stage of Pt ALD on pristine, defective and functionalized graphenes. The employed reaction mechanism clearly depends on (a) the available surface groups on graphene, and (b) the ligands accompanying the metal centre in the precursor. DFT calculations also indicate that graphene oxide (GO) can afford a stronger adsorption of MeCpPtMe3, unlike Pt(acac)2, as compared to bare (non-functionalized) graphene, suggesting that GO monolayers are effective Pt ALD seed layers. Confirming the latter, we evince that wafer-scale, continuous Pt films can indeed be grown on GO monolayers using a thermal ALD process with MeCpPtMe3 and O2 gas. Besides, the current in-depth atomistic insights are of practical use for understanding similar ALD processes of other metals and metal oxides on graphene.
Chemistry of Materials | 2017
René H. J. Vervuurt; Bora Karasulu; Marcel A. Verheijen; Wilhelmus Erwin Mm Kessels; Ageeth A. Bol
A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD.
Scientific Reports | 2017
Wesley Theodorus Eduardus van den Beld; Mathieu Odijk; René H. J. Vervuurt; Jw Jan-Willem Weber; Ageeth A. Bol; Albert van den Berg; Jan C.T. Eijkel
Electrochemistry on graphene is of particular interest due to graphene’s high surface area, high electrical conductivity and low interfacial capacitance. Because the graphene Fermi level can be probed by its strong Raman signal, information on the graphene doping can be obtained which in turn can provide information on adsorbed atoms or molecules. For this paper, the adsorption analysis was successfully performed using three electroactive substances with different electrode interaction mechanisms: hexaammineruthenium(III) chloride (RuHex), ferrocenemethanol (FcMeOH) and potassium ferricyanide/potassium ferrocyanide (Fe(CN)6). The adsorption state was probed by analysing the G-peak position in the measured in-situ Raman spectrum during electrochemical experiments. We conclude that electrochemical Raman spectroscopy on graphene is a valuable tool to obtain in-situ information on adsorbed species on graphene, isolated from the rest of the electrochemical behaviour.
Nanoscale | 2018
Fen Qiu; René H. J. Vervuurt; Marcel A. Verheijen; Edmond W. Zaia; Erin B. Creel; Youngsang Kim; Jeffrey J. Urban; Ageeth A. Bol
Supported catalysts are widely used in industry and can be optimized by tuning the composition, chemical structure, and interface of the nanoparticle catalyst and oxide support. Here we firstly combine a bottom up colloidal synthesis method with a top down atomic layer deposition (ALD) process to achieve a raspberry-like Pt-decorated Fe3O4 (Fe3O4-Pt) nanoparticle superlattices. This nanocomposite ensures the precision of the catalyst/support interface, improving the catalytic efficiency of the Fe3O4-Pt nanocomposite system. The morphology of the hybrid nanocomposites resulting from different cycles of ALD was monitored by scanning transmission electron microscopy, giving insight into the nucleation and growth mechanism of the ALD process. X-ray photoelectron spectroscopy studies confirm the anticipated electron transfer from Fe3O4 to Pt through the nanocomposite interface. Photocurrent measurement further suggests that Fe3O4 superlattices with controlled decoration of Pt have substantial promise for energy-efficient photoelectrocatalytic oxygen evolution reaction. This work opens a new avenue for designing supported catalyst architectures via precisely controlled decoration of single component superlattices with noble metals.
ChemElectroChem | 2018
Andrey Goryachev; Lu Gao; Yue Zhang; Roderigh Y. Rohling; René H. J. Vervuurt; Ageeth A. Bol; Jan P. Hofmann; Emiel J. M. Hensen
Abstract Cobalt phosphides are an emerging earth‐abundant alternative to platinum‐group‐metal‐based electrocatalysts for the hydrogen evolution reaction (HER). Yet, their stability is inferior to platinum and compromises the large‐scale applicability of CoPx in water electrolyzers. In the present study, we employed flat, thin CoPx electrodes prepared through the thermal phosphidation (PH3) of Co3O4 films made by plasma‐enhanced atomic layer deposition to evaluate their stability in acidic water electrolysis by using a multi‐technique approach. The films were found to be composed of two phases: CoP in the bulk and a P‐rich surface CoPx (P/Co>1). Their performance was evaluated in the HER and the exchange current density was determined to be j 0=−8.9 ⋅ 10−5 A/cm2. The apparent activation energy of HER on CoPx (E a=81±15 kJ/mol) was determined for the first time. Dissolution of the material in 0.5 M H2SO4 was observed, regardless of the constantly applied cathodic potential, pointing towards a chemical instead of an electrochemical origin of the observed cathodic instability. The current density and HER faradaic efficiency (FE) were found to be stable during chronoamperometric treatment, as the chemical composition of the HER‐active phase remained unchanged. On the contrary, a dynamic potential change performed in a repeated way facilitated dissolution of the film, yielding its complete degradation within 5 h. There, the FE was also found to be changing. An oxidative route of CoPx dissolution has also been proposed.
Advanced Functional Materials | 2016
Lu Gao; Yingchao Cui; René H. J. Vervuurt; Dick van Dam; René van Veldhoven; Jan P. Hofmann; Ageeth A. Bol; J.E.M. Haverkort; Peter H. L. Notten; Erik P. A. M. Bakkers; Emiel J. M. Hensen
Journal of Membrane Science | 2013
Colin A. Wolden; Kehinde Adeyemo; René H. J. Vervuurt; Mayur Ostwal; J. Douglas Way
Advanced Materials Interfaces | 2017
René H. J. Vervuurt; W.M.M. Kessels; Ageeth A. Bol
2D Materials | 2017
Nick F. W. Thissen; René H. J. Vervuurt; Adriaan J. M. Mackus; Johannes Jacobus Lambertus Mulders; Jw Jan-Willem Weber; Wilhelmus M. M. Kessels; Ageeth A. Bol