Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where René Heller is active.

Publication


Featured researches published by René Heller.


Astronomy and Astrophysics | 2011

Tidal obliquity evolution of potentially habitable planets

René Heller; Jérémy Leconte; Rory Barnes

Context. Stellar insolation has been used as the main constraint on a planet’s potential habitability. However, as more Earth-like planets are discovered around low-mass stars (LMSs), a re-examination of the role of tides on the habitability of exoplanets has begun. Those studies have yet to consider the misalignment between a planet’s rotational axis and the orbital plane normal, i.e. the planetary obliquity. Aims. This paper considers the constraints on habitability arising from tidal processes due to the planet’s spin orientation and rate. Since tidal processes are far from being understood we seek to understand differences between commonly used tidal models. Methods. We apply two equilibrium tide theories – a constant-phase-lag model and a constant-time-lag model – to compute the obliquity evolution of terrestrial planets orbiting in the habitable zones around LMSs. The time for the obliquity to decrease from an Earth-like obliquity of 23.5 ◦ to 5 ◦ , the “tilt erosion time”, is compared to the traditional insolation habitable zone (IHZ) in the parameter space spanned by the semi-major axis a, the eccentricity e, and the stellar mass Ms. We also compute tidal heating and equilibrium rotation caused by obliquity tides as further constraints on habitability. The Super-Earth Gl581 d and the planet candidate Gl581 g are studied as examples for these tidal processes.


Astronomy and Astrophysics | 2012

Exomoon habitability constrained by energy flux and orbital stability

René Heller

Context. Detecting massive satellites that orbit extrasolar planets has now become feasible, which led naturally to questions about the habitability of exomoons. In a previous study we presented constraints on the habitability of moons from stellar and planetary illumination as well as from tidal heating. Aims. Here I refine our model by including the effect of eclipses on the orbit-averaged illumination. I then apply an analytic approximation for the Hill stability of a satellite to identify the range of stellar and planetary masses in which moons can be habitable. Moons in low-mass stellar systems must orbit their planet very closely to remain bounded, which puts them at risk of strong tidal heating. Methods. I first describe the effect of eclipses on the stellar illumination of satellites. Then I calculate the orbit-averaged energy flux, which includes illumination from the planet and tidal heating to parametrize exomoon habitability as a function of stellar mass, planetary mass, and planet-moon orbital eccentricity. The habitability limit is defined by a scaling relation at which a moon loses its water by the runaway greenhouse process. As a working hypothesis, orbital stability is assumed if the moon’s orbital period is less than 1/9 of the planet’s orbital period. Results. Due to eclipses, a satellite in a close orbit can experience a reduction in orbit-averaged stellar flux by up to about 6%. The smaller the semi-major axis and the lower the inclination of the moon’s orbit, the stronger the reduction. I find a lower mass limit of


Astrobiology | 2014

Formation, Habitability, and Detection of Extrasolar Moons

René Heller; Darren M. Williams; David M. Kipping; Mary Anne Limbach; Edwin L. Turner; Richard Greenberg; T. Sasaki; Emeline Bolmont; Olivier Grasset; Karen M. Lewis; Rory Barnes; Jorge I. Zuluaga

The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoons stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.


Astrobiology | 2013

Habitable planets around white and brown dwarfs: the perils of a cooling primary.

Rory Barnes; René Heller

White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planets surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10(-6). Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 10(4) K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable.


The Astrophysical Journal | 2015

Water Ice Lines and the Formation of Giant Moons around Super-Jovian Planets

René Heller; Ralph E. Pudritz

Most of the exoplanets with known masses at Earth-like distances to Sun-like stars are heavier than Jupiter, which raises the question of whether such planets are accompanied by detectable, possibly habitable moons. Here we simulate the accretion disks around super-Jovian planets and find that giant moons with masses similar to Mars can form. Our results suggest that the Galilean moons formed during the final stages of accretion onto Jupiter, when the circumjovian disk was sufficiently cool. But in contrast to other studies, with our assumptions, we show that Jupiter was still feeding from the circumsolar disk and that its principal moons cannot have formed after the complete photoevaporation of the circumsolar nebula. To counteract the steady loss of moons into the planet due to type I migration, we propose that the water ice line around Jupiter and super-Jovian exoplanets acted as a migration trap for moons. Heat transitions, however, cross the disk during the gap opening within 10^4 yr, which makes them inefficient as moon traps. This indicates a fundamental difference between planet and moon formation. We find that icy moons larger than the smallest known exoplanet can form at about 15 - 30 Jupiter radii around super-Jovian planets. Their size implies detectability by the Kepler and PLATO space telescopes as well as by the European Extremely Large Telescope.


Astronomy and Astrophysics | 2012

Estimating transiting exoplanet masses from precise optical photometry

D. Mislis; René Heller; J. H. M. M. Schmitt; Simon T. Hodgkin

We present a theoretical analysis of the optical light curves (LCs) for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i) reflected and thermally emitted light by the planet; (ii) the ellipsoidal shape of the star due to the gravitational pull of the planet; and (iii) the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and the planet’s albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii) can be large enough to be distinguished from the remaining components and that this effect can be used to constrain the planet’s mass. To detect the ellipsoidal variations, the LC requires a minimum precision of 10 −4 , which coincides with the precision of the Kepler mission. As a test of our approach, we consider the Kepler LC of the transiting object HAT-P-7. We are able to estimate the mass of the companion, and confirm its planetary nature solely from the LC data. Future space missions, such as PLATO and the James Webb Space Telescope with even higher photometric precision, will be able to reduce the errors in all parameters. Detailed modeling of any out-of-eclipse variations seen in new systems will be a useful diagnostic tool prior to the requisite ground based radial velocity follow-up.


Astronomy and Astrophysics | 2015

Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1−20 AU from Sun-like stars

René Heller; Ralph E. Pudritz

Context. The first detection of a moon around an extrasolar planet (an “exomoon”) might be feasible with NASA’s Kepler or ESA’s upcoming PLATO space telescopes or with the future ground-based European Extremely Large Telescope. To guide observers and to use observational resources most e ciently, we need to know where the largest, most easily detected moons can form. Aims. We explore the possibility of large exomoons by following the movement of water (H2O) ice lines in the accretion disks around young super-Jovian planets. We want to know how the di erent heating sources in those disks a ect the location of the H2O ice lines as a function of stellar and planetary distance. Methods. We simulate 2D rotationally symmetric accretion disks in hydrostatic equilibrium around super-Jovian exoplanets. The energy terms in our semi-analytical framework ‐ (1) viscous heating; (2) planetary illumination; (3) accretional heating of the disk; and (4) stellar illumination ‐ are fed by precomputed planet evolution models. We consider accreting planets with final masses between 1 and 12 Jupiter masses at distances between 1 and 20 AU to a solar type star. Results. Accretion disks around Jupiter-mass planets closer than about 4.5 AU to Sun-like stars do not feature H2O ice lines, whereas the most massive super-Jovians can form icy satellites as close as 3 AU to Sun-like stars. We derive an empirical formula for the total moon mass as a function of planetary mass and stellar distance and predict that super-Jovian planets forming beyond about 5 AU can host Mars-mass moons. Planetary illumination is the major heat source in the final stages of accretion around Jupiter-mass planets, whereas disks around the most massive super-Jovians are similarly heated by planetary illumination and viscous heating. This indicates a transition towards circumstellar accretion disks, where viscous heating dominates in the stellar vicinity. We also study a broad range of circumplanetary disk parameters for planets at 5.2 AU and find that the H2O ice lines are universally between about 15 and 30 Jupiter radii in the final stages of accretion when the last generation of moons is supposed to form. Conclusions. If the abundant population of super-Jovian planets around 1 AU formed in situ, then these planets should lack the previously predicted population of giant icy moons, because those planets’ disks did not host H2O ice in the final stages of accretion. But in the more likely case that these planets migrated to their current locations from beyond about 3 to 4.5 AU they might be orbited by large, water-rich moons. In this case, Mars-mass ocean moons might be common in the stellar habitable zones. Future exomoon detections and non-detections can provide powerful constraints on the formation and migration history of giant exoplanets.


The Astrophysical Journal | 2013

Magnetic Shielding of Exomoons beyond the Circumplanetary Habitable Edge

René Heller; Jorge I. Zuluaga

With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planets magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.


Astronomy and Astrophysics | 2015

The formation of the Galilean moons and Titan in the Grand Tack scenario

René Heller; G.-D. Marleau; Ralph E. Pudritz

In the Grand Tack (GT) scenario for the young solar system, Jupiter formed beyond 3.5 AU from the Sun and migrated as close as 1.5 AU until it encountered an orbital resonance with Saturn. Both planets then supposedly migrated outward for several


Astronomy and Astrophysics | 2010

Tidal effects on brown dwarfs: application to the eclipsing binary 2MASS J05352184-0546085 - The anomalous temperature reversal in the context of tidal heating

René Heller; Brian Jackson; Rory Barnes; Richard Greenberg; Derek Homeier

10^5

Collaboration


Dive into the René Heller's collaboration.

Top Co-Authors

Avatar

Rory Barnes

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Hippke

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Dreizler

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Derek Homeier

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy Ostensen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jérémy Leconte

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge