Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rene Kizek is active.

Publication


Featured researches published by Rene Kizek.


Pharmacological Research | 2010

Magnetic nanoparticles and targeted drug delivering

Jana Chomoucka; Jana Drbohlavova; Dalibor Huska; Vojtech Adam; Rene Kizek

Magnetic nanoparticles (MNPs) are being of great interest due to their unique purposes. Especially in medicine, application of MNPs is much promising. MNPs have been actively investigated as the next generation of targeted drug delivery for more than thirty years. The importance of targeted drug delivery and targeted drug therapy is to transport a drug directly to the centre of the disease under various conditions and thereby treat it deliberately, with no effects on the body. Usage of MNPs depends largely on the preparation processes to select optimal conditions and election agents to modify their surface. This review summarizes the most commonly used functionalization methods of the MNPs preparation methods and their use in targeted drug delivery and targeted therapy.


Journal of Materials Chemistry | 2011

Methods for carbon nanotubes synthesis—review

Jan Prasek; Jana Drbohlavova; Jana Chomoucka; Ondrej Jasek; Vojtech Adam; Rene Kizek

Carbon nanotubes (CNTs) have been under scientific investigation for more than fifteen years because of their unique properties that predestine them for many potential applications. The field of nanotechnology and nanoscience push their investigation forward to produce CNTs with suitable parameters for future applications. It is evident that new approaches of their synthesis need to be developed and optimized. In this paper we review history, types, structure and especially the different synthesis methods for CNTs preparation including arc discharge, laser ablation and chemical vapour deposition. Moreover, we mention some rarely used ways of arc discharge deposition which involves arc discharge in liquid solutions in contrary to standard used deposition in a gas atmosphere. In addition, the methods for uniform vertically aligned CNTs synthesis using lithographic techniques for catalyst deposition as well as a method utilizing a nanoporous anodized aluminium oxide as a pattern for selective CNTs growth are reported too.


International Journal of Molecular Sciences | 2013

The Role of Metallothionein in Oxidative Stress

Branislav Ruttkay-Nedecky; Jaromír Gumulec; Ondrej Zitka; Michal Masarik; Tomas Eckschlager; Marie Stiborová; Vojtech Adam; Rene Kizek

Free radicals are chemical particles containing one or more unpaired electrons, which may be part of the molecule. They cause the molecule to become highly reactive. The free radicals are also known to play a dual role in biological systems, as they can be either beneficial or harmful for living systems. It is clear that there are numerous mechanisms participating on the protection of a cell against free radicals. In this review, our attention is paid to metallothioneins (MTs) as small, cysteine-rich and heavy metal-binding proteins, which participate in an array of protective stress responses. The mechanism of the reaction of metallothioneins with oxidants and electrophilic compounds is discussed. Numerous reports indicate that MT protects cells from exposure to oxidants and electrophiles, which react readily with sulfhydryl groups. Moreover, MT plays a key role in regulation of zinc levels and distribution in the intracellular space. The connections between zinc, MT and cancer are highlighted.


International Journal of Molecular Sciences | 2009

Quantum dots - characterization, preparation and usage in biological systems.

Jana Drbohlavova; Vojtech Adam; Rene Kizek

The use of fluorescent nanoparticles as probes for bioanalytical applications is a highly promising technique because fluorescence-based techniques are very sensitive. Quantum dots (QDs) seem to show the greatest promise as labels for tagging and imaging in biological systems owing to their impressive photostability, which allow long-term observations of biomolecules. The usage of QDs in practical applications has started only recently, therefore, the research on QDs is extremely important in order to provide safe and effective biosensing materials for medicine. This review reports on the recent methods for the preparation of quantum dots, their physical and chemical properties, surface modification as well as on some interesting examples of their experimental use.


Interdisciplinary Toxicology | 2010

Deoxynivalenol and its toxicity.

Pavlina Sobrova; Vojtech Adam; Anna Vasatkova; Miroslava Beklova; Ladislav Zeman; Rene Kizek

Deoxynivalenol and its toxicity Deoxynivalenol (DON) is one of several mycotoxins produced by certain Fusarium species that frequently infect corn, wheat, oats, barley, rice, and other grains in the field or during storage. The exposure risk to human is directly through foods of plant origin (cereal grains) or indirectly through foods of animal origin (kidney, liver, milk, eggs). It has been detected in buckwheat, popcorn, sorgum, triticale, and other food products including flour, bread, breakfast cereals, noodles, infant foods, pancakes, malt and beer. DON affects animal and human health causing acute temporary nausea, vomiting, diarrhea, abdominal pain, headache, dizziness, and fever. This review briefly summarizes toxicities of this mycotoxin as well as effects on reproduction and their antagonistic and synergic actions.


Analytica Chimica Acta | 2002

Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor

Emil Paleček; Rene Kizek; Luděk Havran; Sabina Billová; Miroslav Fojta

In most of the currently developed electrochemical DNA hybridization sensors short single-stranded probe DNA is immobilized on an electrode and both the hybridization and detection steps are carried out on the electrode surface. Here we use a new technology in which DNA hybridization is performed on commercially available magnetic beads and detection on solid electrodes. Paramagnetic Dynabeads Oligo(dT)25 (DBT) with covalently bound (dT)25 probe are used for the hybridization with target DNA containing adenine stretches. Target DNA is modified with osmium tetroxide,2,2′-bipyridine (Os,bipy) and the immunogenic DNA-Os,bipy adduct is determined by the enzyme-linked immunoassay with electrochemical detection. Electroinactive 1-naphthyl phosphate is used as a substrate and the electroactive product (1-naphthol) is measured on the carbon electrodes. Alternatively Os,bipy-modified target DNA can be determined directly by measuring the osmium signal on the pyrolytic graphite electrode (PGE). A comparison between determinations of the 67-mer oligodeoxynucleotide on carbon electrodes using (a) the guanine oxidation signal, (b) direct determination of the DNA-Os,bipy adduct and (c) its electrochemical immunoassay showed immunoassay to be the most sensitive method. In combination with DBT, the DNA hybridization of long target deoxyoligonucleotides (such as 67- and 97-mers) and a DNA PCR product (226-base pairs) have been detected by immunoassay at high sensitivity and specificity.


Current Protein & Peptide Science | 2009

Metallothioneins and Cancer

Tomas Eckschlager; Vojtech Adam; Jan Hrabeta; Katarina Figova; Rene Kizek

Metallothioneins (MTs) are low molecular, cysteine-rich proteins that have naturally-occurring Zn(2+) in both clusters. They may serve as a reservoir of metals for synthesis of apoenzymes and zinc-finger transcription regulators. MTs are also involved with several important proteins e.g. p53, NF-kappaB, PKCl, and GTPase Rab3A. New biological roles for these proteins have been identified including those needed in the carcinogenic process. However, their use as a predictive marker remains controversial. Several reports have disclosed MTs expression as a prognostic factor for tumor progression and drug resistance in a variety of malignancies particularly breast, prostatic, ovarial, head and neck, non-small cell lung cancer, melanoma, and soft tissue sarcoma. The role of MTs as a tumor disease marker or as a cause of resistance in cancer treatment is reviewed and discussed. Moreover, we describe some analytical methods that were developed to detect MTs.


Talanta | 2002

DNA hybridization at microbeads with cathodic stripping voltammetric detection

Emil Paleček; Sabina Billová; Luděk Havran; Rene Kizek; A Mičulková; František Jelen

In electrochemical DNA hybridization sensors generally a single-stranded probe DNA was immobilized at the electrode followed by hybridization with the target DNA and electrochemical detection of the hybridization event at the same electrode. In this type of experiments nonspecific adsorption of DNA at the electrode caused serious difficulties especially in the case of the analysis of long target DNAs. We propose a new technology in which DNA is hybridized at a surface H and the hybridization is detected at the detection electrode (DE). This technology significantly extends the choice of hybridization surfaces and DEs. Here we use paramagnetic Dynabeads Oligo(dT)(25) (DBT) as a transportable reactive surface H and a hanging mercury drop electrode as DE. We describe a label-free detection of DNA and RNA (selectively captured at DBT) based on the determination of adenines (at ppb levels, by cathodic stripping voltammetry) released from the nucleic acids by acid treatment. The DNA and RNA nonspecific adsorption at DBT is negligible, making thus possible to detect the hybridization event with a great specificity and sensitivity. Specific detection of the hybridization of polyribonucleotides, mRNA, oligodeoxynucleotides, and a DNA PCR product (226 base pairs) is demonstrated. New possibilities in the development of the DNA hybridization sensors opened by the proposed technology, including utilization of catalytic signals in nucleic acid determination at mercury (e.g. signals of osmium complexes covalently bound to DNA) and solid DEs (e.g. using enzyme-labeled antibodies against chemically modified DNAs) are discussed.


Pharmacology & Therapeutics | 2012

Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances

Rene Kizek; Vojtech Adam; Jan Hrabeta; Tomas Eckschlager; Svatopluk Smutny; Jaroslav V. Burda; Eva Frei; Marie Stiborová

Over the past forty years, anthracyclines and ellipticines have attracted attention as promising cytostatics. In this review, we focus on their mechanisms of cytoxicity, DNA-damaging effects and adverse side-effects. We also summarize ways to enhance the therapeutic effects of these drugs together with a decrease in their adverse effects. Current drug design strategies are focused on drug bioavailability and their tissue targeting, whereas drug delivery to specific intracellular compartments is rarely addressed. Therefore, therapies utilizing the antineoplastic activities of anthracyclines and ellipticines combined with novel strategies such as nanotechnologies for safer drug delivery, as well as strategies based on gene therapy, could significantly contribute to medical practice.


Biosensors and Bioelectronics | 2015

Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application.

Maja Stanisavljevic; Sona Krizkova; Marketa Vaculovicova; Rene Kizek; Vojtech Adam

Fluorescence resonance energy transfer (FRET) in combination with quantum dots (QDs) and their superior properties has enabled designing of the new and improved sensors. In this review, the latest novelties in development and application of FRET nanosensors employing QDs are presented. QDs offer several advantages over organic dyes - broad excitation spectra, narrow defined tunable emission peak, longer fluorescence lifetime, resistance to photobleaching and 10-100 times higher molar extinction coefficient. These properties of QDs allow multicolor QDs to be excited from one source by common fluorescent dyes without emission signal overlap and results in brighter probes comparing to conventional fluorophores. Due to these benefits, QD-FRET-based nanosensors gained a wide spread popularity in a variety of scientific areas. These sensors are most frequently applied in the domain of the nucleic acid and enzyme activity detection. Other applications are detection of peptides and low-molecular compounds, environmental pollutants, viruses, microorganisms and their toxins, QD-FRET-based immunoassays, and pH sensors.

Collaboration


Dive into the Rene Kizek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Eckschlager

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge