René Lenobel
Palacký University, Olomouc
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by René Lenobel.
Cell Cycle | 2012
Lenka Oplustilova; Kamila Wolanin; Martin Mistrik; Gabriela Korinkova; Dana Simkova; Jan Bouchal; René Lenobel; Jirina Bartkova; Alan Lau; Mark J. O’Connor; Jiri Lukas; Jiri Bartek
Impaired DNA damage response pathways may create vulnerabilities of cancer cells that can be exploited therapeutically. One such selective vulnerability is the sensitivity of BRCA1- or BRCA2-defective tumors (hence defective in DNA repair by homologous recombination, HR) to inhibitors of the poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme critical for repair pathways alternative to HR. While promising, treatment with PARP-1 inhibitors (PARP-1i) faces some hurdles, including (1) acquired resistance, (2) search for other sensitizing, non-BRCA1/2 cancer defects and (3) lack of biomarkers to predict response to PARP-1i. Here we addressed these issues using PARP-1i on 20 human cell lines from carcinomas of the breast, prostate, colon, pancreas and ovary. Aberrations of the Mre11-Rad50-Nbs1 (MRN) complex sensitized cancer cells to PARP-1i, while p53 status was less predictive, even in response to PARP-1i combinations with camptothecin or ionizing radiation. Furthermore, monitoring PARsylation and Rad51 foci formation as surrogate markers for PARP activity and HR, respectively, supported their candidacy for biomarkers of PARP-1i responses. As to resistance mechanisms, we confirmed the role of the multidrug resistance efflux transporters and its reversibility. More importantly, we demonstrated that shRNA lentivirus-mediated depletion of 53BP1 in human BRCA1-mutant breast cancer cells increased their resistance to PARP-1i. Given the preferential loss of 53BP1 in BRCA-defective and triple-negative breast carcinomas, our findings warrant assessment of 53BP1 among candidate predictive biomarkers of response to PARPi. Overall, this study helps characterize genetic and functional determinants of cellular responses to PARP-1i and contributes to the search for biomarkers to exploit PARP inhibitors in cancer therapy.
Plant Methods | 2012
Jana Svačinová; Ondřej Novák; Lenka Plačková; René Lenobel; Josef Holík; Miroslav Strnad; Karel Doležal
BackgroundWe have developed a new analytical approach for isolation and quantification of cytokinins (CK) in minute amounts of fresh plant material, which combines a simple one-step purification with ultra-high performance liquid chromatography–fast scanning tandem mass spectrometry.ResultsPlant tissue samples (1–5 mg FW) were purified by stop-and-go-microextraction (StageTip purification), which previously has only been applied for clean-up and pre-concentration of peptides. We found that a combination of two reverse phases and one cation-exchange phase, was the best tool, giving a total extraction recovery higher than 80%. The process was completed by a single chromatographic analysis of a wide range of naturally occurring cytokinins (bases, ribosides, O- and N-glucosides, and nucleotides) in 24.5 minutes using an analytical column packed with sub-2-microne particles. In multiple reaction monitoring mode, the detection limits ranged from 0.05 to 5 fmol and the linear ranges for most cytokinins were at least five orders of magnitude. The StageTip purification was validated and optimized using samples of Arabidopsis thaliana seedlings, roots and shoots where eighteen cytokinins were successfully determined.ConclusionsThe combination of microextraction with one-step high-throughput purification provides fast, effective and cheap sample preparation prior to qualitative and quantitative measurements. Our procedure can be used after modification also for other phytohormones, depending on selectivity, affinity and capacity of the selected sorbents.
Bioorganic & Medicinal Chemistry Letters | 2002
Vladimír Kryštof; René Lenobel; Libor Havlíček; Marek Kuzma; Miroslav Strnad
Based on our previous experiences with synthesis of purines, novel 2,6,9-trisubstituted purine derivatives were prepared and assayed for the ability to inhibit CDK1/cyclin B kinase. One of newly synthesized compounds designated as olomoucine II, 6-[(2-hydroxybenzyl)amino]-2-[[1-(hydroxymethyl)propyl]amino]-9-isopropylpurine, displays 10 times higher inhibitory activity than roscovitine, potent and specific CDK1 inhibitor. Olomoucine II in vitro cytotoxic activity exceeds purvalanol A, the most potent CDK inhibitor, as it kills the CEM cells with IC(50) value of 3.0 microM.
Phytochemistry | 2010
Jiří Voller; Marek Zatloukal; René Lenobel; Karel Doležal; Tibor Béres; Vladimír Kryštof; Lukáš Spíchal; Percy Niemann; Petr Džubák; Marian Hajduch; Miroslav Strnad
Cytokinin ribosides (N(6)-substituted adenosine derivatives) have been shown to have anticancer activity both in vitro and in vivo. This study presents the first systematic analysis of the relationship between the chemical structure of cytokinins and their cytotoxic effects against a panel of human cancer cell lines with diverse histopathological origins. The results confirm the cytotoxic activity of N(6)-isopentenyladenosine, kinetin riboside, and N(6)-benzyladenosine and show that the spectrum of cell lines that are sensitive to these compounds and their tissues of origin are wider than previously reported. The first evidence that the hydroxylated aromatic cytokinins (ortho-, meta-, para-topolin riboside) and the isoprenoid cytokinin cis-zeatin riboside have cytotoxic activities is presented. Most cell lines in the panel showed greatest sensitivity to ortho-topolin riboside (IC(50)=0.5-11.6 microM). Cytokinin nucleotides, some synthesized for the first time in this study, were usually active in a similar concentration range to the corresponding ribosides. However, cytokinin free bases, 2-methylthio derivatives and both O- and N-glucosides showed little or no toxicity. Overall the study shows that structural requirements for cytotoxic activity of cytokinins against human cancer cell lines differ from the requirements for their activity in plant bioassays. The potent anticancer activity of ortho-topolin riboside (GI(50)=0.07-84.60 microM, 1st quartile=0.33 microM, median=0.65 microM, 3rd quartile=1.94 microM) was confirmed using NCI(60), a standard panel of 59 cell lines, originating from nine different tissues. Further, the activity pattern of oTR was distinctly different from those of standard anticancer drugs, suggesting that it has a unique mechanism of activity. In comparison with standard drugs, oTR showed exceptional cytotoxic activity against NCI(60) cell lines with a mutated p53 tumour suppressor gene. oTR also exhibited significant anticancer activity against several tumour models in in vivo hollow fibre assays.
Journal of Molecular Biology | 2010
Martina Tylichová; David Kopečný; Solange Moréra; Pierre Briozzo; René Lenobel; Jacques Snégaroff; Marek Šebela
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 A resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.
Plant Journal | 2014
Roman Kouřil; Ondřej Strouhal; Lukáš Nosek; René Lenobel; Ivo Chamrád; Egbert J. Boekema; Marek Šebela; Petr Ilík
Cyclic electron transport (CET) around photosystem I (PSI) plays an important role in balancing the ATP/NADPH ratio and the photoprotection of plants. The NAD(P)H dehydrogenase complex (NDH) has a key function in one of the CET pathways. Current knowledge indicates that, in order to fulfill its role in CET, the NDH complex needs to be associated with PSI; however, until now there has been no direct structural information about such a supercomplex. Here we present structural data obtained for a plant PSI-NDH supercomplex. Electron microscopy analysis revealed that in this supercomplex two copies of PSI are attached to one NDH complex. A constructed pseudo-atomic model indicates asymmetric binding of two PSI complexes to NDH and suggests that the low-abundant Lhca5 and Lhca6 subunits mediate the binding of one of the PSI complexes to NDH. On the basis of our structural data, we propose a model of electron transport in the PSI-NDH supercomplex in which the association of PSI to NDH seems to be important for efficient trapping of reduced ferredoxin by NDH.
Journal of Chromatography B | 2002
Jakub Rolc̆ı́k; René Lenobel; Vĕra Siglerová; Miroslav Strnad
A single-step, highly specific and easy-to-use method was developed for isolation and purification of melatonin from complex biological matrices. Polyclonal antibodies highly specific against melatonin (with cross-reactivities with related compounds below 0.02%, except for 6-hydroxymelatonin) were raised, characterised by enzyme-linked immunosorbent assay (ELISA) and used for preparation of immunoaffinity gel. Melatonin recovery by the immunoaffinity method was approximately 95%, allowing single-step processing of samples prior to electrospray HPLC-MS analysis (with detection limit 10 fmol). The method was successfully used for determining melatonin in human serum and turned out to be better than the non-specific solid-phase extraction published earlier.
Bioorganic & Medicinal Chemistry Letters | 2003
Daniela Moravcová; Vladimír Kryštof; Libor Havlíček; Jiri Moravec; René Lenobel; Miroslav Strnad
A search among analogues of anti-CDK purines led to the identification of substituted pyrazolo[4,3-d]pyrimidines as novel inhibitors of CDK1/cyclin B. Some of these derivatives also show antiproliferative activity on cancer cell line K-562, thus may find an application as anticancer agents.
Cytogenetic and Genome Research | 2014
Beáta Petrovská; Hana Jeřábková; Ivo Chamrád; Jan Vrána; René Lenobel; Jana Uřinovská; Marek Šebela; Jaroslav Doležel
Many proteins are present in the nucleus; some are involved with its structural and functional organization, some with gene expression, and some with cell division. The plant nuclear proteome has not been well explored. Its characterization requires extraction methods which minimize both the artifactual alteration of the proteins and the extent of contamination with non-nuclear proteins. The conventional multi-step fractionation procedure is both laborious and prone to contamination. Here, we describe a single-step method based on flow sorting. The method allows the separation of G1, S and G2 phase nuclei and minimizes the risk of contamination by non-nuclear proteins. Preliminary results obtained using G1 phase cell nuclei from barley root tips indicate that flow sorting coupled with a protein/peptide separation and mass spectrometry will permit a comprehensive characterization of the plant nuclear proteome.
Bioorganic & Medicinal Chemistry Letters | 2003
Jiří C. Moravec; Vladimír Kryštof; Jan Hanuš; Libor Havlíček; Daniela Moravcová; Květoslava Fuksová; Marek Kuzma; René Lenobel; Michal Otyepka; Miroslav Strnad
Purine inhibitors of cyclin-dependent kinases attract attention as potential anticancer drugs because their first representative roscovitine recently entered clinical trials. Although well described in terms of structure-activity relationships, we still present here a novel modification of the purine scaffold influencing their inhibitory properties. The introduced C-8 substituents, however, lowered the CDK inhibitory activity of roscovitine, whereas the antiproliferative potential of several derivatives remained high.