René Maehr
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by René Maehr.
Nature Biotechnology | 2008
Danwei Huangfu; René Maehr; Wenjun Guo; Astrid Eijkelenboom; Melinda Snitow; Alice E. Chen; Douglas A. Melton
Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.
Nature Biotechnology | 2008
Danwei Huangfu; Kenji Osafune; René Maehr; Wenjun Guo; Astrid Eijkelenboom; Shuibing Chen; Whitney Muhlestein; Douglas A. Melton
Ectopic expression of defined sets of genetic factors can reprogram somatic cells to induced pluripotent stem (iPS) cells that closely resemble embryonic stem (ES) cells. The low efficiency with which iPS cells are derived hinders studies on the molecular mechanism of reprogramming, and integration of viral transgenes, in particular the oncogenes c-Myc and Klf4, may handicap this method for human therapeutic applications. Here we report that valproic acid (VPA), a histone deacetylase inhibitor, enables reprogramming of primary human fibroblasts with only two factors, Oct4 and Sox2, without the need for the oncogenes c-Myc or Klf4. The two factor–induced human iPS cells resemble human ES cells in pluripotency, global gene expression profiles and epigenetic states. These results support the possibility of reprogramming through purely chemical means, which would make therapeutic use of reprogrammed cells safer and more practical.
Proceedings of the National Academy of Sciences of the United States of America | 2009
René Maehr; Shuibing Chen; Melinda Snitow; Thomas Ludwig; Lisa Yagasaki; Robin Goland; Rudolph L. Leibel; Douglas A. Melton
Type 1 diabetes (T1D) is the result of an autoimmune destruction of pancreatic β cells. The cellular and molecular defects that cause the disease remain unknown. Pluripotent cells generated from patients with T1D would be useful for disease modeling. We show here that induced pluripotent stem (iPS) cells can be generated from patients with T1D by reprogramming their adult fibroblasts with three transcription factors (OCT4, SOX2, KLF4). T1D-specific iPS cells, termed DiPS cells, have the hallmarks of pluripotency and can be differentiated into insulin-producing cells. These results are a step toward using DiPS cells in T1D disease modeling, as well as for cell replacement therapy.
Cell | 2010
Paul L. Greer; Rikinari Hanayama; Brenda L. Bloodgood; Alan R. Mardinly; David M. Lipton; Steven W. Flavell; Tae Kyung Kim; Eric C. Griffith; Zachary Waldon; René Maehr; Hidde L. Ploegh; Shoaib Chowdhury; Paul F. Worley; Judith A. Steen; Michael E. Greenberg
Angelman Syndrome is a debilitating neurological disorder caused by mutation of the E3 ubiquitin ligase Ube3A, a gene whose mutation has also recently been associated with autism spectrum disorders (ASDs). The function of Ube3A during nervous system development and how Ube3A mutations give rise to cognitive impairment in individuals with Angleman Syndrome and ASDs are not clear. We report here that experience-driven neuronal activity induces Ube3A transcription and that Ube3A then regulates excitatory synapse development by controlling the degradation of Arc, a synaptic protein that promotes the internalization of the AMPA subtype of glutamate receptors. We find that disruption of Ube3A function in neurons leads to an increase in Arc expression and a concomitant decrease in the number of AMPA receptors at excitatory synapses. We propose that this deregulation of AMPA receptor expression at synapses may contribute to the cognitive dysfunction that occurs in Angelman Syndrome and possibly other ASDs.
Nature Chemical Biology | 2009
Shuibing Chen; Malgorzata Borowiak; Julia L. Fox; René Maehr; Kenji Osafune; Lance S. Davidow; Kelvin Lam; Lee F Peng; Stuart L. Schreiber; Lee L. Rubin; Douglas A. Melton
Stepwise differentiation from embryonic stem cells (ESCs) to functional insulin-secreting beta cells will identify key steps in beta-cell development and may yet prove useful for transplantation therapy for diabetics. An essential step in this schema is the generation of pancreatic progenitors--cells that express Pdx1 and produce all the cell types of the pancreas. High-content chemical screening identified a small molecule, (-)-indolactam V, that induces differentiation of a substantial number of Pdx1-expressing cells from human ESCs. The Pdx1-expressing cells express other pancreatic markers and contribute to endocrine, exocrine and duct cells, in vitro and in vivo. Further analyses showed that (-)-indolactam V works specifically at one stage of pancreatic development, inducing pancreatic progenitors from definitive endoderm. This study describes a chemical screening platform to investigate human ESC differentiation and demonstrates the generation of a cell population that is a key milepost on the path to making beta cells.
Cell Stem Cell | 2009
Malgorzata Borowiak; René Maehr; Shuibing Chen; Alice E. Chen; Weiping Tang; Julia L. Fox; Stuart L. Schreiber; Douglas A. Melton
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives, including lung, liver, and pancreas, are of interest for regenerative medicine, but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds, two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm, a higher efficiency than that achieved by Activin A or Nodal, commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers, can participate in normal development when injected into developing embryos, and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.
Nature | 2008
Thomas F. Westbrook; Guang Hu; Xiaolu L. Ang; Peter Mulligan; Natalya N. Pavlova; Anthony C. Liang; Yumei Leng; René Maehr; Yang Shi; J. Wade Harper; Stephen J. Elledge
The RE1-silencing transcription factor (REST, also known as NRSF) is a master repressor of neuronal gene expression and neuronal programmes in non-neuronal lineages. Recently, REST was identified as a human tumour suppressor in epithelial tissues, suggesting that its regulation may have important physiological and pathological consequences. However, the pathways controlling REST have yet to be elucidated. Here we show that REST is regulated by ubiquitin-mediated proteolysis, and use an RNA interference (RNAi) screen to identify a Skp1-Cul1-F-box protein complex containing the F-box protein β-TRCP (SCFβ-TRCP) as an E3 ubiquitin ligase responsible for REST degradation. β-TRCP binds and ubiquitinates REST and controls its stability through a conserved phospho-degron. During neural differentiation, REST is degraded in a β-TRCP-dependent manner. β-TRCP is required for proper neural differentiation only in the presence of REST, indicating that β-TRCP facilitates this process through degradation of REST. Conversely, failure to degrade REST attenuates differentiation. Furthermore, we find that β-TRCP overexpression, which is common in human epithelial cancers, causes oncogenic transformation of human mammary epithelial cells and that this pathogenic function requires REST degradation. Thus, REST is a key target in β-TRCP-driven transformation and the β-TRCP–REST axis is a new regulatory pathway controlling neurogenesis.
Nature Methods | 2015
Nicola A. Kearns; Hannah Pham; Barbara Tabak; Ryan M. J. Genga; Noah J. Silverstein; Manuel Garber; René Maehr
Understanding of mammalian enhancers is limited by the lack of a technology to rapidly and thoroughly test the cell type–specific function. Here, we use a nuclease-deficient Cas9 (dCas9)–histone demethylase fusion to functionally characterize previously described and new enhancer elements for their roles in the embryonic stem cell state. Further, we distinguish the mechanism of action of dCas9-LSD1 at enhancers from previous dCas9-effectors.
Genes & Development | 2010
Kathy K. Niakan; Hongkai Ji; René Maehr; Steven A. Vokes; Kit T. Rodolfa; Richard I. Sherwood; Mariko Yamaki; John T. Dimos; Alice E. Chen; Douglas A. Melton; Andrew P. McMahon; Kevin Eggan
In embryonic stem (ES) cells, a well-characterized transcriptional network promotes pluripotency and represses gene expression required for differentiation. In comparison, the transcriptional networks that promote differentiation of ES cells and the blastocyst inner cell mass are poorly understood. Here, we show that Sox17 is a transcriptional regulator of differentiation in these pluripotent cells. ES cells deficient in Sox17 fail to differentiate into extraembryonic cell types and maintain expression of pluripotency-associated transcription factors, including Oct4, Nanog, and Sox2. In contrast, forced expression of Sox17 down-regulates ES cell-associated gene expression and directly activates genes functioning in differentiation toward an extraembryonic endoderm cell fate. We show these effects of Sox17 on ES cell gene expression are mediated at least in part through a competition between Sox17 and Nanog for common DNA-binding sites. By elaborating the function of Sox17, our results provide insight into how the transcriptional network promoting ES cell self-renewal is interrupted, allowing cellular differentiation.
Journal of Experimental Medicine | 2002
Ana-Maria Lennon-Duménil; Arnold H. Bakker; René Maehr; Edda Fiebiger; Herman S. Overkleeft; Mario Rosemblatt; Hidde L. Ploegh; Cécile Lagaudrière-Gesbert
Here, we describe a new approach designed to monitor the proteolytic activity of maturing phagosomes in live antigen-presenting cells. We find that an ingested particle sequentially encounters distinct protease activities during phagosomal maturation. Incorporation of active proteases into the phagosome of the macrophage cell line J774 indicates that phagosome maturation involves progressive fusion with early and late endocytic compartments. In contrast, phagosome biogenesis in bone marrow–derived dendritic cells (DCs) and macrophages preferentially involves endocytic compartments enriched in cathepsin S. Kinetics of phagosomal maturation is faster in macrophages than in DCs. Furthermore, the delivery of active proteases to the phagosome is significantly reduced after the activation of DCs with lipopolysaccharide. This observation is in agreement with the notion that DCs prevent the premature destruction of antigenic determinants to optimize T cell activation. Phagosomal maturation is therefore a tightly regulated process that varies according to the type and differentiation stage of the phagocyte.