Rene Rost
Medical University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rene Rost.
Nature | 2005
Ludwig Eichinger; J. A. Pachebat; G. Glöckner; Marie-Adele Rajandream; Richard Sucgang; Matthew Berriman; J. Song; Rolf Olsen; Karol Szafranski; Qikai Xu; Budi Tunggal; Sarah K. Kummerfeld; B. A. Konfortov; Francisco Rivero; Alan Thomas Bankier; R. Lehmann; N. Hamlin; Robert Davies; Pascale Gaudet; Petra Fey; Karen E Pilcher; Guokai Chen; David L. Saunders; Erica Sodergren; Paul Davis; Arnaud Kerhornou; X. Nie; Neil Hall; Christophe Anjard; Lisa Hemphill
The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal–fungal lineage after the plant–animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
Journal of Biological Chemistry | 2012
Muhammad Rizwan Alam; Lukas N. Groschner; Warisara Parichatikanond; Liang Kuo; Alexander I. Bondarenko; Rene Rost; Markus Waldeck-Weiermair; Roland Malli; Wolfgang F. Graier
Background: The molecular contributors of the mitochondrial Ca2+ uptake, which is essential for metabolism-secretion coupling in β-cells, are unknown. Results: Knockdown of MICU1 and MCU reduced agonist- and depolarization-induced mitochondrial Ca2+ sequestration, ATP production, and d-glucose-stimulated insulin secretion. Conclusion: MICU1 and MCU are integral to metabolism-secretion coupling in β-cells. Significance: The presented data identify MICU1 and MCU as important contributors to pancreatic β-cell function. In pancreatic β-cells, uptake of Ca2+ into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca2+ sequestration in clonal INS-1 832/13 pancreatic β-cells: the mitochondrial Ca2+ uptake 1 (MICU1), mitochondrial Ca2+ uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca2+ sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca2+ uptake upon both intracellular Ca2+ release and Ca2+ entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca2+ uptake in response to either intracellular Ca2+ release or Ca2+ entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca2+ uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca2+ oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca2+ uptake in pancreatic β-cells and their involvement in the positive feedback required for sustained insulin secretion.
Journal of Biological Chemistry | 2011
Markus Waldeck-Weiermair; Claire Jean-Quartier; Rene Rost; Muhammad Jadoon Khan; Neelanjan Vishnu; Alexander I. Bondarenko; Hiromi Imamura; Roland Malli; Wolfgang F. Graier
Cytosolic Ca2+ signals are transferred into mitochondria over a huge concentration range. In our recent work we described uncoupling proteins 2 and 3 (UCP2/3) to be fundamental for mitochondrial uptake of high Ca2+ domains in mitochondria-ER junctions. On the other hand, the leucine zipper EF hand-containing transmembrane protein 1 (Letm1) was identified as a mitochondrial Ca2+/H+ antiporter that achieved mitochondrial Ca2+ sequestration at small Ca2+ increases. Thus, the contributions of Letm1 and UCP2/3 to mitochondrial Ca2+ uptake were compared in endothelial cells. Knock-down of Letm1 did not affect the UCP2/3-dependent mitochondrial uptake of intracellularly released Ca2+ but strongly diminished the transfer of entering Ca2+ into mitochondria, subsequently, resulting in a reduction of store-operated Ca2+ entry (SOCE). Knock-down of Letm1 and UCP2/3 did neither impact on cellular ATP levels nor the membrane potential. The enhanced mitochondrial Ca2+ signals in cells overexpressing UCP2/3 rescued SOCE upon Letm1 knock-down. In digitonin-permeabilized cells, Letm1 exclusively contributed to mitochondrial Ca2+ uptake at low Ca2+ conditions. Neither the Letm1- nor the UCP2/3-dependent mitochondrial Ca2+ uptake was affected by a knock-down of mRNA levels of mitochondrial calcium uptake 1 (MICU1), a protein that triggers mitochondrial Ca2+ uptake in HeLa cells. Our data indicate that Letm1 and UCP2/3 independently contribute to two distinct, mitochondrial Ca2+ uptake pathways in intact endothelial cells.
Journal of Biological Chemistry | 2007
Claudia Trasak; Gerhardt Zenner; Annette Vogel; Gülnihal Yüksekdag; Rene Rost; Ilka Haase; Markus Fischer; Lars Israel; Axel Imhof; Stefan Linder; Michael Schleicher; Martin Aepfelbacher
Pathogenic bacteria of the genus Yersinia employ a type III secretion system to inject effector proteins (Yops) into host cells. The Yops down-regulate host cell functions through unique biochemical activities. YopO, a serine/threonine kinase required for Yersinia virulence, is activated by host cell actin via an unknown process. Here we show that YopO kinase is activated by formation of a 1:1 complex with monomeric (G) actin but is unresponsive to filamentous (F) actin. Two separate G-actin binding sites, one in the N-terminal kinase region (amino acids 89–440) and one in the C-terminal guanine nucleotide dissociation inhibitor-like region (amino acids 441–729) of YopO, were identified. Actin binding to both of these sites was necessary for effective autophosphorylation of YopO on amino acids Ser-90 and Ser-95. A S90A/S95A YopO mutant was strongly reduced in substrate phosphorylation, suggesting that autophosphorylation activates YopO kinase activity. In cells the kinase activity of YopO regulated rounding/arborization and was specifically required for inhibition of Yersinia YadA-dependent phagocytosis. Thus, YopO kinase is activated by a novel G-actin binding process, and this appears to be crucial for its anti-host cell functions.
Nature Communications | 2016
Emrah Eroglu; Benjamin Gottschalk; Suphachai Charoensin; Sandra Blass; Helmut Bischof; Rene Rost; Corina T. Madreiter-Sokolowski; Brigitte Pelzmann; Eva Bernhart; Wolfgang Sattler; Seth Hallström; Tadeusz Malinski; Markus Waldeck-Weiermair; Wolfgang F. Graier; Roland Malli
Nitric oxide () is a free radical with a wide range of biological effects, but practically impossible to visualize in single cells. Here we report the development of novel multicoloured fluorescent quenching-based probes by fusing a bacteria-derived -binding domain close to distinct fluorescent protein variants. These genetically encoded probes, referred to as geNOps, provide a selective, specific and real-time read-out of cellular dynamics and, hence, open a new era of bioimaging. The combination of geNOps with a Ca2+ sensor allowed us to visualize and Ca2+ signals simultaneously in single endothelial cells. Moreover, targeting of the probes was used to detect signals within mitochondria. The geNOps are useful new tools to further investigate and understand the complex patterns of signalling on the single (sub)cellular level.
Molecular Biology of the Cell | 2014
Neelanjan Vishnu; Muhammad Jadoon Khan; Felix Karsten; Lukas N. Groschner; Markus Waldeck-Weiermair; Rene Rost; Seth Hallström; Hiromi Imamura; Wolfgang F. Graier; Roland Malli
Real-time recordings of ER ATP fluxes in single cells using an ER-targeted, genetically encoded ATP sensor within the lumen of the ER reveal a local Ca2+-controlled ATP signal that is restored during energy stress. The data highlight a novel Ca2+-controlled process that supplies the ER with additional energy upon cell stimulation.
Journal of Biological Chemistry | 2001
Klaus-Peter Janssen; Rene Rost; Ludwig Eichinger; Michael Schleicher
The CD36/LIMPII family is ubiquitously expressed in higher eukaryotes and consists of integral membrane proteins that have in part been characterized as cell adhesion receptors, scavenger receptors, or fatty acid transporters. However, no physiological role has been defined so far for the members of this family that localize specifically to vesicular compartments rather than to the cell surface, namely lysosomal integral membrane protein type II (LIMPII) from mammals and LmpA from the amoeba Dictyostelium discoideum. LmpA, the first described CD36/LIMPII homologue from lower eukaryotes, has initially been identified as a suppressor of the profilin-minus phenotype. We report the discovery and initial characterization of two new CD36/LIMPII-related proteins, both of which share several features with LmpA: (i) their size is considerably larger than that of the CD36/LIMPII proteins from higher eukaryotes; (ii) they show the characteristic “hairpin” topology of this protein family; (iii) they are heavily N-glycosylated; and (iv) they localize to vesicular structures of putative endolysosomal origin. However, they show intriguing differences in their developmental regulation and exhibit different sorting signals of the di-leucine or tyrosine-type in their carboxyl-terminal tail domains. These features make them promising candidates as a paradigm for the study of the function and evolution of the as yet poorly understood CD36/LIMPII proteins.
Scientific Reports | 2015
Markus Waldeck-Weiermair; Roland Malli; Warisara Parichatikanond; Benjamin Gottschalk; Corina T. Madreiter-Sokolowski; Christiane Klec; Rene Rost; Wolfgang F. Graier
Mitochondrial Ca2+ uptake is a vital process that controls distinct cell and organelle functions. Mitochondrial calcium uptake 1 (MICU1) was identified as key regulator of the mitochondrial Ca2+ uniporter (MCU) that together with the essential MCU regulator (EMRE) forms the mitochondrial Ca2+ channel. However, mechanisms by which MICU1 controls MCU/EMRE activity to tune mitochondrial Ca2+ signals remain ambiguous. Here we established a live-cell FRET approach and demonstrate that elevations of cytosolic Ca2+ rearranges MICU1 multimers with an EC50 of 4.4 μM, resulting in activation of mitochondrial Ca2+ uptake. MICU1 rearrangement essentially requires the EF-hand motifs and strictly correlates with the shape of cytosolic Ca2+ rises. We further show that rearrangements of MICU1 multimers were independent of matrix Ca2+ concentration, mitochondrial membrane potential, and expression levels of MCU and EMRE. Our experiments provide novel details about how MCU/EMRE is regulated by MICU1 and an original approach to investigate MCU/EMRE activation in intact cells.
Nature Communications | 2016
Corina T. Madreiter-Sokolowski; Christiane Klec; Warisara Parichatikanond; Sarah Stryeck; Benjamin Gottschalk; Sergio Pulido; Rene Rost; Emrah Eroglu; Nicole A. Hofmann; Alexander I. Bondarenko; Tobias Madl; Markus Waldeck-Weiermair; Roland Malli; Wolfgang F. Graier
Recent studies revealed that mitochondrial Ca2+ channels, which control energy flow, cell signalling and death, are macromolecular complexes that basically consist of the pore-forming mitochondrial Ca2+ uniporter (MCU) protein, the essential MCU regulator (EMRE), and the mitochondrial Ca2+ uptake 1 (MICU1). MICU1 is a regulatory subunit that shields mitochondria from Ca2+ overload. Before the identification of these core elements, the novel uncoupling proteins 2 and 3 (UCP2/3) have been shown to be fundamental for mitochondrial Ca2+ uptake. Here we clarify the molecular mechanism that determines the UCP2/3 dependency of mitochondrial Ca2+ uptake. Our data demonstrate that mitochondrial Ca2+ uptake is controlled by protein arginine methyl transferase 1 (PRMT1) that asymmetrically methylates MICU1, resulting in decreased Ca2+ sensitivity. UCP2/3 normalize Ca2+ sensitivity of methylated MICU1 and, thus, re-establish mitochondrial Ca2+ uptake activity. These data provide novel insights in the complex regulation of the mitochondrial Ca2+ uniporter by PRMT1 and UCP2/3.
Sensors | 2015
Markus Waldeck-Weiermair; Helmut Bischof; Sandra Blass; Andras T. Deak; Christiane Klec; Thomas Graier; Clara Roller; Rene Rost; Emrah Eroglu; Benjamin Gottschalk; Nicole A. Hofmann; Wolfgang F. Graier; Roland Malli
Cameleons are sophisticated genetically encoded fluorescent probes that allow quantifying cellular Ca2+ signals. The probes are based on Förster resonance energy transfer (FRET) between terminally located fluorescent proteins (FPs), which move together upon binding of Ca2+ to the central calmodulin myosin light chain kinase M13 domain. Most of the available cameleons consist of cyan and yellow FPs (CFP and YFP) as the FRET pair. However, red-shifted versions with green and orange or red FPs (GFP, OFP, RFP) have some advantages such as less phototoxicity and minimal spectral overlay with autofluorescence of cells and fura-2, a prominent chemical Ca2+ indicator. While GFP/OFP- or GFP/RFP-based cameleons have been successfully used to study cytosolic and mitochondrial Ca2+ signals, red-shifted cameleons to visualize Ca2+ dynamics of the endoplasmic reticulum (ER) have not been developed so far. In this study, we generated and tested several ER targeted red-shifted cameleons. Our results show that GFP/OFP-based cameleons due to miss-targeting and their high Ca2+ binding affinity are inappropriate to record ER Ca2+ signals. However, ER targeted GFP/RFP-based probes were suitable to sense ER Ca2+ in a reliable manner. With this study we increased the palette of cameleons for visualizing Ca2+ dynamics within the main intracellular Ca2+ store.