Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where René Van Grieken is active.

Publication


Featured researches published by René Van Grieken.


Science of The Total Environment | 2004

Platinum group elements in the environment and their health risk

Khaiwal Ravindra; László Bencs; René Van Grieken

Accumulation of platinum group elements (PGEs) in the environment has been increased over the time. Catalytic converters of modern vehicles are considered to be the main sources of PGE pollution, since the correlation is between the Pt:Rh ratios in various environmental compartments and in converter units. The present literature survey shows that the concentration of these metals has increased significantly in the last decades in diverse environmental matrices; like airborne particulate matter, soil, roadside dust and vegetation, river, coastal and oceanic environment. Generally, PGEs are referred to behave in an inert manner and to be immobile. However, there is an evidence of spread and bioaccumulation of these elements in the environment. Platinum content of road dusts can be soluble, consequently, it enters the waters, sediments, soil and finally, the food chain. The effect of chronic occupational exposure to Pt compounds is well-documented, and certain Pt species are known to exhibit allergenic potential. However, the toxicity of biologically available anthropogenic Pt is not clear. Hence, there is a need to study the effect on human health of long-term chronic exposure to low levels of Pt compounds.


Spectrochimica Acta Part B: Atomic Spectroscopy | 2003

Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters

László Bencs; Khaiwal Ravindra; René Van Grieken

Abstract Anthropogenic emission of platinum group elements (PGEs) from the abrasion of automotive catalytic converters into the environment has significantly increased. However, the concentration level of these PGEs (i.e. Pd, Pt, Rh) is still very low in the nature. Accordingly, their determination and speciation in various environmental compartments appears to be a challenging task for analytical chemists. The present review gives an overview of the analytical procedures documented in this particular field of analytical chemistry with a distinctive emphasis on spectrochemical methodology, it being the most sensitive and robust for accomplishing the above analytical task.


Journal of Geophysical Research | 2003

composition and diurnal variability of the natural Amazonian aerosol

Bim Graham; Pascal Guyon; Willy Maenhaut; Philip E. Taylor; Martin Ebert; Sabine Matthias-Maser; Olga L. Mayol-Bracero; Ricardo H. M. Godoi; Paulo Artaxo; Franz X. Meixner; Marcos Antonio Lima Moura; Carlos H. Eça D'Almeida Rocha; René Van Grieken; M. Michael Glovsky; Meinrat O. Andreae

As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign, separate day and nighttime aerosol samples were collected in July 2001 at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural “background” aerosol. A combination of analytical techniques was used to characterize the elemental and ionic composition of the aerosol. Major particle types larger than ∼0.5 μm were identified by electron and light microscopy. Both the coarse and fine aerosol were found to consist primarily of organic matter (∼70 and 80% by mass, respectively), with the coarse fraction containing small amounts of soil dust and sea-salt particles and the fine fraction containing some non-sea-salt sulfate. Coarse particulate mass concentrations (CPM ≈ PM_(10) − PM_2) were found to be highest at night (average = 3.9 ± 1.4 μg m^(−3), mean night-to-day ratio = 1.9 ± 0.4), while fine particulate mass concentrations (FPM ≈ PM_2) increased during the daytime (average = 2.6 ± 0.8 μg m^(−3), mean night-to-day ratio = 0.7 ± 0.1). The nocturnal increase in CPM coincided with an increase in primary biological particles in this size range (predominantly yeasts and other fungal spores), resulting from the trapping of surface-derived forest aerosol under a shallow nocturnal boundary layer and a lake-land breeze effect at the site, although active nocturnal sporulation may have also contributed. Associated with this, we observed elevated nighttime concentrations of biogenic elements and ions (P, S, K, Cu, Zn, NH_4^+) in the CPM fraction. For the FPM fraction a persistently higher daytime concentration of organic carbon was found, which indicates that photochemical production of secondary organic aerosol from biogenic volatile organic compounds may have made a significant contribution to the fine aerosol. Dust and sea-salt-associated elements/ions in the CPM fraction, and non-sea-salt sulfate in the FPM fraction, showed higher daytime concentrations, most likely due to enhanced convective downward mixing of long-range transported aerosol.


Spectrochimica Acta Part B: Atomic Spectroscopy | 1996

IDAS : a Windows based software package for cluster analysis

I. Bondarenko; B. Treiger; René Van Grieken; Pierre J. Van Espen

Abstract This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and one appendix, is accompanied by two installation diskettes with the software package and data files. The main article discusses the chemometric aspects of the package and explains its purpose. The IDAS software package combines three cluster analysis methods (hierarchical, non-hierarchical and fuzzy) and runs under MS Windows. Modified algorithms for non-hierarchical and fuzzy clusterings are described. The interpretation of the clustering results is facilitated by the extensive use of different types of graph. New approaches to the graphical representation of the results of fuzzy clustering are proposed. Two data sets, the Iris data by Fisher and a data set on the chemical composition of tea, are used to demonstrate the capabilities of the software.


Environmental Health Perspectives | 2009

Associations between PM2.5 and heart rate variability are modified by particle composition and beta-blocker use in patients with coronary heart disease.

Jeroen J. de Hartog; Timo Lanki; Kirsi L. Timonen; Gerard Hoek; Nicole A.H. Janssen; Angela Ibald-Mulli; Annette Peters; Joachim Heinrich; Tuula H. Tarkiainen; René Van Grieken; Joop van Wijnen; Bert Brunekreef; Juha Pekkanen

Background It has been hypothesized that ambient particulate air pollution is able to modify the autonomic nervous control of the heart, measured as heart rate variability (HRV). Previously we reported heterogeneous associations between particulate matter with aerodynamic diameter < 2.5 μm (PM2.5) and HRV across three study centers. Objectives We evaluated whether exposure misclassification, effect modification by medication, or differences in particle composition could explain the inconsistencies. Methods Subjects with coronary heart disease visited clinics biweekly in Amsterdam, the Netherlands; Erfurt, Germany; and Helsinki, Finland for 6–8 months. The standard deviation (SD) of NN intervals on an electrocardiogram (ECG; SDNN) and high frequency (HF) power of HRV was measured with ambulatory ECG during paced breathing. Outdoor levels of PM2.5 were measured at a central site. In Amsterdam and Helsinki, indoor and personal PM2.5 were measured during the 24 hr preceding the clinic visit. PM2.5 was apportioned between sources using principal component analyses. We analyzed associations of indoor/personal PM2.5, elements of PM2.5, and source-specific PM2.5 with HRV using linear regression. Results Indoor and personal PM2.5 were not associated with HRV. Increased outdoor PM2.5 was associated with decreased SDNN and HF at lags of 2 and 3 days only among persons not using beta-blocker medication. Traffic-related PM2.5 was associated with decreased SDNN, and long-range transported PM2.5 with decreased SDNN and HF, most strongly among persons not using beta blockers. Indicators for PM2.5 from traffic and long-range transport were also associated with decreased HRV. Conclusions Our results suggest that differences in the composition of particles, beta-blocker use, and obesity of study subjects may explain some inconsistencies among previous studies on HRV.


Mikrochimica Acta | 2000

Light Element Analysis of Individual Microparticles Using Thin-Window EPMA

J. Osán; Imre Szalóki; Chul Un Ro; René Van Grieken

Abstract. The determination of the concentration of light elements, such as carbon, nitrogen and oxygen, in e.g. atmospheric aerosol particles is important to study the chemical behaviour of atmospheric pollution. The knowledge of low-Z element concentrations gives us information on the speciation of nutrients (species having nutritional value for plants) and toxic heavy metals in the particles. The capability of the conventional energy-dispersive EPMA is strongly limited for the analysis of low-Z elements, mainly because the Be window in the EDX detector hinders the detection of characteristic X-rays of light elements such as C, N, O and Na. WDS is suitable for analysis of light elements, but the measurement of beam sensitive microparticles requires the minimisation of the beam current and the measurement time. A semi-quantitative analytical method based on EPMA using an ultra-thin window EDX detector was developed. It was found that the matrix and geometric effects that are important for low-energy X-rays can be reliably evaluated by Monte Carlo calculations. Therefore, the quantification part of the method contains reverse Monte Carlo calculation done by iterative simulations. The method was standardised and tested by measurements on single particles with known chemical compositions. Beam-sensitive particles such as ammonium-sulphate and ammonium-nitrate were analysed using a liquid nitrogen cooled sample stage. The shape and size of the particles, which are important for the simulations, were determined using a high-magnification secondary electron image. Individual marine aerosol particles collected over the North Sea by a nine-stage Berner cascade impactor were analysed using this new method. Preliminary results on five samples and 4500 particles show that the method can be used to study the modification of sea-salt particles in the troposphere.


Atmospheric Environment. Part B. Urban Atmosphere | 1990

Aerosols in Santiago de Chile: a study using receptor modeling with x-ray fluorescence and single particle analysis.

Carlos M. Rojas; Paulo Artaxo; René Van Grieken

Between 15 January and 26 February 1987, 51 fine and coarse mode aerosol samples were collected at the Universidad de Santiago de Chile Planetarium using a dichotomous sampler. The samples were analyzed by X-ray fluorescence for up to 17 elements (Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb). Aerosol particles were individually studied by Electron Probe Microanalysis (EPMA) and Laser Microprobe Mass Analysis (LAMMA). The data set consisting of aerosol elemental concentrations and meteorological variables was subjected to Principal Factor Analysis (PFA), allowing the identification of six fine mode particle source classes (soil, industrial, sulfate particles, traffic, residual oil, wood-burnings), and five coarse mode particle source classes (soil, industrial, traffic, residual oil, sulfate particles). Both PFA solutions explained about 81 and 90% of the total variance in the data set, respectively. The regression of elemental mass concentrations on the Absolute Principal Factor Scores allowed the estimation of the contribution of the different source classes to the Santiago aerosol. Within the fine fraction, secondary SO42− particles were responsible for about 49% of the fine mode aerosol mass concentration, while 26, 13, 6.4 and 5.6% were attributed to wood-burning/car exhausts, residual oil combustion, soil dust/metallurgical, and soil dust/wood-burning releases, respectively. The coarse fraction source apportionment was mainly dominated by soil dust, accounting for 74% of the coarse mode aerosol mass concentration. A composite of soil dust and industrial release accounted for 13%; a composite of secondary sulfates contributed with 9%; a composite of soil dust and automotive emissions, and secondary sulfates were responsible for 4 and 0.03% of the coarse aerosol mass concentration, respectively. EPMA results are in satisfactory agreement with those from the bulk analysis and allowed the identification of eight particle types in both fine and coarse mode aerosols, pertaining to different source classes, namely soil, seaspray, secondary SO42−, metallurgical emissions and biomass burning release. EPMA also evidenced that one of the most abundant particle types corresponded to marine aerosol, having an average diameter of 0.7 μm for the fine mode and 2.2 μm for the coarse mode aerosol. LAMMA results indicate that, in fact, seaspray has been transported into the city of Santiago de Chile airshed, suffering several transformations and a sulfur enrichment. This analytical technique also provided evidence of the abundance of carbon-rich particles, which were not detected by either the bulk X-ray analysis or EPMA; they are probably due to fossil-fuel combustion releases.


Atmospheric Environment | 2001

Chemical speciation of individual atmospheric particles using low-Z electron probe X-ray microanalysis:: characterizing “Asian Dust” deposited with rainwater in Seoul, Korea

Chul Un Ro; Keun Young Oh; HyeKyeong Kim; Youngsin Chun; János Osán; Johan de Hoog; René Van Grieken

Chemical speciation of individual microparticles is of much interest in environmental atmospheric chemistry; e.g. the determination of the elemental concentrations in individual atmospheric aerosol particles is important to study the chemical behavior of atmospheric pollution. Recently, an EPMA technique using an X-ray detector equipped with an ultra-thin window, allowing EPMA to determine concentrations of low-Z elements, such as C, N, and O, in individual particles of micrometer size, has been developed. This technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), is applied to characterize the water-insoluble part of “Asian Dust”, deposited by washout in the form of rainwater during an Asian Dust storm event and collected in Seoul, Korea. In this study, it was demonstrated that the single particle analysis using low-Z EPMA provided detailed information on various types of chemical species in the sample. In addition to aluminosilicates, silicon oxide, iron oxide, and calcium carbonate particles, which are expected to be present, carbonaceous particles are also observed in a significant fraction. This unexpected finding that particle sample originated from an arid area contains significant amount of carbonaceous particles is supported by the investigation of a “China Loess” sample. In addition, we also performed single particle analysis for a local soil sample, in order to check the possible influence from local sources on “Asian Dust”. The characteristics of the local soil particle sample, e.g. the types of aluminosilicate particles and the abdundance of particles with deviating chemical species, are clearly different from “Asian Dust” and “China Loess” samples, whereas those two are similar, implying that the “Asian Dust” sample was not much influenced by local sources.


Atmospheric Environment | 2002

Characterisation of aerosol particles in the São Paulo Metropolitan Area

Regina Maura de Miranda; Maria de Fátima Andrade; Anna Worobiec; René Van Grieken

Abstract Aerosol samples were collected in the Sao Paulo Metropolitan Area, Brazil, during two periods (winter and summer) for fine and coarse particles; they were analysed by gravimetry, scanning electron microscopy, particle induced X-ray emission (PIXE) and electron probe X-ray micro analysis (EPXMA) in order to investigate the mass concentration, morphology and physico–chemical properties of the particles. The gravimetry and PIXE results confirmed that the aerosol concentration is higher in winter than in summer, as expected from the climatological conditions (dry winter and humid summer). Hierarchical cluster analysis of the EPXMA results showed the presence of metal compounds, silicon-rich particles, sulphates, carbonates, chlorides, organics and biogenic particles.


Environmental Research | 2012

Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

Lotte Jacobs; Anna J. Buczyńska; Christophe Walgraeve; Andy Delcloo; Sanja Potgieter-Vermaak; René Van Grieken; Kristof Demeestere; Jo Dewulf; Herman Van Langenhove; Hugo De Backer; Benoit Nemery; Tim S. Nawrot

An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM(2.5) (particulate matter with an aerodynamic diameter <2.5 μm) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM(10) (particulate matter with an aerodynamic diameter <10 μm) were measured. Each interquartile range increase of 20.8 μg/m³ in 24-h mean outdoor PM(2.5) was associated with an increase in pulse pressure of 4.0 mm Hg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM(2.5) were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

Collaboration


Dive into the René Van Grieken's collaboration.

Top Co-Authors

Avatar

Ricardo H. M. Godoi

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

László Bencs

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sanja Potgieter-Vermaak

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Ana F. L. Godoi

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khaiwal Ravindra

Post Graduate Institute of Medical Education and Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge