Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where René Verhoef is active.

Publication


Featured researches published by René Verhoef.


Glycoconjugate Journal | 2008

High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

Isabel Moller; Susan E. Marcus; Ash Haeger; Yves Verhertbruggen; René Verhoef; Henk A. Schols; Peter Ulvskov; Jørn Dalgaard Mikkelsen; J. Paul Knox; William G. T. Willats

Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall glycans immobilized on nitrocellulose was assessed. Hierarchical clustering of microarray binding profiles from newly produced mAbs, together with the profiles for mAbs with previously defined specificities allowed the rapid assignments of mAb binding to antigen classes. mAb specificities were further investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in plant materials.


Carbohydrate Research | 2009

Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench).

Nipaporn Sengkhamparn; René Verhoef; Henk A. Schols; Tanaboon Sajjaanantakul; A.G.J. Voragen

Okra pods are commonly used in Asia as a vegetable, food ingredient, as well as a traditional medicine for many different purposes; for example, as diuretic agent, for treatment of dental diseases and to reduce/prevent gastric irritations. The healthy properties are suggested to originate from the high polysaccharide content of okra pods, resulting in a highly viscous solution with a slimy appearance when okra is extracted with water. In this study, we present a structural characterisation of all major cell wall polysaccharides originating from okra pods. The sequential extraction of okra cell wall material yielded fractions of soluble solids extractable using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The HBSS fraction was shown to be rich in galactose, rhamnose and galacturonic acid in the ratio 1.3:1:1.3. The degree of acetylation is relatively high (DA=58) while the degree of methyl esterification is relatively low (DM=24). The CHSS fraction contained much higher levels of methyl esterified galacturonic acid residues (63% galacturonic acid; DM=48) in addition to minor amounts of rhamnose and galactose. The ratio of galactose to rhamnose to galacturonic acid was 1.3:1.0:1.3 and 4.5:1.0:1.2 for HBSS and CHSS, respectively. These results indicated that the HBSS and CHSS fractions contain rhamnogalacturonan type I next to homogalacturonan, while the latter is more prevailing in CHSS. Also the DASS fraction is characterised by high amounts of rhamnose, galactose, galacturonic acid and some arabinose, indicating that rhamnogalacturonan I elements with longer arabinose- and galactose-rich side chains were part of this fraction. Partial digestion of HBSS and CHSS by pectin methyl esterase and polygalacturonase resulted in a fraction with a lower Mw and lower viscosity in solution. These samples were subjected to NMR analysis, which indicated that, in contrast to known RG I structure, the acetyl groups in HBSS are not located on the galacturonic acid residues, while for CHSS only part of the acetyl groups are located on the RG I galacturonic acid residues. The CASS fraction consisted of XXXG-type xyloglucan and 4-methylglucuronoxylan as shown by their sugar (linkage) composition and enzymatic digestion.


Carbohydrate Research | 2009

Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alpha-linked galactosyl groups

Nipaporn Sengkhamparn; Edwin J. Bakx; René Verhoef; Henk A. Schols; Tanaboon Sajjaanantakul; A.G.J. Voragen

The okra plant, Abelmoschus esculentus (L.) Moench, a native plant from Africa, is now cultivated in many other areas such as Asia, Africa, Middle East, and the southern states of the USA. Okra pods are used as vegetables and as traditional medicines. Sequential extraction showed that the Hot Buffer Soluble Solids (HBSS) extract of okra consists of highly branched rhamnogalacturonan (RG) I containing high levels of acetyl groups and short galactose side chains. In contrast, the CHelating agent Soluble Solids (CHSS) extract contained pectin with less RG I regions and slightly longer galactose side chains. Both pectic populations were incubated with homogeneous and well characterized rhamnogalacturonan hydrolase (RGH), endo-polygalacturonase (PG), and endo-galactanase (endo-Gal), monitoring both high and low molecular weight fragments. RGH is able to degrade saponified HBSS and, to some extent, also non-saponified HBSS, while PG and endo-Gal are hardly able to degrade either HBSS or saponified HBSS. In contrast, PG is successful in degrading CHSS, while RGH and endo-Gal are hardly able to degrade the CHSS structure. These results point to a much higher homogalacturonan (HG) ratio for CHSS when compared to HBSS. In addition, the CHSS contained slightly longer galactan side chains within its RG I region than HBSS. Matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated the presence of acetylated RG oligomers in the HBSS and CHSS enzyme digests and electron spray ionization-ion trap-mass spectrum showed that not only galacturonosyl residues but also rhamnosyl residues in RG I oligomers were O-acetylated. NMR spectroscopy showed that all rhamnose residues in a 20kDa HBSS population were O-acetylated at position O-3. Surprisingly, the NMR data also showed that terminal alpha-linked galactosyl groups were present as neutral side chain substituents. Taken together, these results demonstrate that okra contained RG I structures which have not been reported before for pectic RG I.


Phytochemistry | 2008

Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls.

Karin Struijs; Jean-Paul Vincken; René Verhoef; A.G.J. Voragen; Harry Gruppen

In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeAG) are also part of the lignan macromolecule. However, their position and type of linkage are still unknown. The aim of this study was to investigate how CouAG and FeAG are linked within the lignan macromolecule from flaxseed hulls. Fragments of the lignan macromolecule were obtained by partial saponification. After isolation of the fragments by preparative RP-HPLC, several key structures were identified by MS and NMR. Within the lignan macromolecule, CouAG is attached to the C-6 position of a glucosyl moiety of SDG. FeA is linked to the C-2 position of a glucosyl moiety of SDG. FeAG is ester-linked within the lignan macromolecule with its carboxyl group, but it remains unclear whether FeAG links to the C-2 or C-6 position of SDG. Attachment of HMGA to the glucosyl moiety of CouAG or FeAG was not observed. The results clearly show that within the lignan macromolecule, the hydroxycinnamic acids are linked directly via an ester bond to the glucosyl moiety of SDG.


Phytotherapy Research | 2009

Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells

Muriel Vayssade; Nipaporn Sengkhamparn; René Verhoef; Claire Delaigue; Oumou Goundiam; Pascale Vigneron; A.G.J. Voragen; Henk A. Schols; Marie-Danielle Nagel

The proliferation and apoptosis of metastatic melanoma cells are often abnormal. We have evaluated the action of a pectic rhamnogalacturonan obtained by hot buffer extraction of okra pods (okra RG‐I) on melanoma cell growth and survival in vitro. We added okra RG‐I containing an almost pure RG‐I carrying very short galactan side chains to 2D (on tissue culture polystyrene, tPS) and 3D (on poly(2‐hydroxyethylmethacrylate), polyHEMA) cultures of highly metastatic B16F10 mouse melanoma cells. We then analyzed cell morphology, proliferation index, apoptosis, cell cycle progression and the expression of adhesion molecules. Immunostaining and western blotting were used to assay galectin‐3 (Gal‐3) protein.


Carbohydrate Research | 2002

Structural elucidation of the EPS of slime producing Brevundimonas vesicularis sp isolated from a paper machine

René Verhoef; Pieter de Waard; Henk A. Schols; Marjaana Rättö; Matti Siika-aho; A.G.J. Voragen

The slime forming bacteria Brevundimonas vesicularis sp. was isolated from a paper mill and its EPS was produced on laboratory scale. After production, the exopolysaccharide (EPS) was purified and analysed for its purity and homogeneity, HPSEC revealed one distinct population with a molecular mass of more than 2,000 kDa. The protein content was around 9 w/w%. The sample was analysed to determine its chemical structure. The EPS was found to consist of rhamnose, glucose, galacturonic acid and glucuronic acid. Due to the presence of uronic acids the molar ratio between the four sugars found varies from 3:5:2:4 by sugar composition analyses after methanolysis to 1:1:1:1 found by NMR. A repeating unit with a molecular mass of 678 Da was confirmed by MALDI-TOF mass spectrometry after mild acid treatment. 13C and 1H hetero- and homonuclear 2D NMR spectroscopy of the native and partial hydrolysed EPS revealed a repeating unit, no non-sugar substituents were present.


Journal of Industrial Microbiology & Biotechnology | 2006

Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes

M. Ratto; René Verhoef; M.L. Suihko; Angeles Blanco; Henk A. Schols; A.G.J. Voragen; R. Wilting; M. Siika-aho; J. Buchert

In this study, polysaccharide-producing bacteria were isolated from slimes collected from two Finnish and one Spanish paper mill and the exopolysaccharides (EPSs) produced by 18 isolates were characterised. Most of the isolates, selected on the bases of slimy colony morphology, were members of the family Enterobacteriaceae most frequently belonging to the genera Enterobacter and Klebsiella including Raoultella. All of the EPSs analysed showed the presence of charged groups in the form of uronic acid or pyruvate revealing the polyanionic nature of these polysaccharides. Further results of the carbohydrate analysis showed that the EPS produced by nine of the enterobacteria was colanic acid.


Biomacromolecules | 2008

Differentiation of osteoblasts on pectin-coated titanium.

Hanna Kokkonen; Clara Cassinelli; René Verhoef; Marco Morra; Henk A. Schols; Juha Tuukkanen

The gold standard for implant metals is titanium, and coatings such as collagen-I, RGD-peptide, chondroitin sulfate, and calcium phosphate have been used to modify its biocompatibility. We investigated how titanium coated with pectins, adaptable bioactive plant polysaccharides with anti-inflammatory effects, supports osteoblast differentiation. MC3T3-E1 cells, primary murine osteoblasts, and human mesenchymal cells (hMC) were cultured on titanium coated with rhamnogalacturonan-rich modified hairy regions (MHR-A and MHR-B) of apple pectin. Alkaline phosphatase (ALP) expression and activity, calcium deposition, and cell spreading were investigated. MHR-B, but not MHR-A, supports osteoblast differentiation. The MHR-A surface was not mineralized, but on MHR-B, the average mineralized area was 14.0% with MC3T3-E1 cells and 26.6% with primary osteoblasts. The ALP activity of hMCs on MHR-A was 58.3% at day 7 and 9.3% from that of MHR-B at day 10. These data indicate that modified pectin nanocoatings may enhance the biocompatibility of bone and dental implants.


Biochimica et Biophysica Acta | 2008

Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle progression and survival of fibroblasts

Marie‑Danielle Nagel; René Verhoef; Henk A. Schols; Marco Morra; J. Paul Knox; Giacomo Ceccone; Claudio Della Volpe; Pascale Vigneron; Cyrill Bussy; M. Gallet; Elodie Velzenberger; Muriel Vayssade; Giovanna Cascardo; Clara Cassinelli; Ash Haeger; Douglas Gilliland; Ioannis Liakos; Miguel A. Rodríguez-Valverde; S. Siboni

Improved biocompatibility and performance of biomedical devices can be achieved through the incorporation of bioactive molecules on device surfaces. Five structurally distinct pectic polysaccharides (modified hairy regions (MHRs)) were obtained by enzymatic liquefaction of apple (MHR-B, MHR-A and MHR-alpha), carrot (MHR-C) and potato (MHR-P) cells. Polystyrene (PS) Petri dishes, aminated by a plasma deposition process, were surface modified by the covalent linking of the MHRs. Results clearly demonstrate that MHR-B induces cell adhesion, proliferation and survival, in contrast to the other MHRs. Moreover, MHR-alpha causes cells to aggregate, decrease proliferation and enter into apoptosis. Cells cultured in standard conditions with 1% soluble MHR-B or MHR-alpha show the opposite behaviour to the one observed on MHR-B and -alpha-grafted PS. Fibronectin was similarly adsorbed onto MHR-B and tissue culture polystyrene (TCPS) control, but poorly on MHR-alpha. The Fn cell binding site (RGD sequence) was more accessible on MHR-B than on TCPS control, but poorly on MHR-alpha. The disintegrin echistatin inhibited fibroblast adhesion and spreading on MHR-B-grafted PS, which suggests that MHRs control fibroblast behaviour via serum-adhesive proteins. This study provides a basis for the design of intelligently-tailored biomaterial coatings able to induce specific cell functions.


Carbohydrate Research | 2003

Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide

René Verhoef; Pieter de Waard; Henk A. Schols; Matti Siika-aho; A.G.J. Voragen

The slime-forming bacterium Methylobacterium sp. was isolated from a Finnish paper machine and its exopolysaccharide (EPS) was produced on laboratory scale. Sugar compositional analysis revealed a 100% galactan (EPS). However, FT-IR showed a very strong peak at 1611 cm(-1) showing the presence of pyruvate. Analysis of the pyruvate content revealed that, based on the sugar composition, the EPS consists of a trisaccharide repeating unit consisting of D-galactopyranose and [4,6-O-(1-carboxyethylidene)]-D-galactopyranose with a molar ratio of 1:2, respectively. Both linkage analysis and 2D homo- and heteronuclear 1H and 13C NMR spectroscopy revealed the following repeating unit: -->3)-[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)-alpha-D-Galp-(1-->. By enrichment cultures from various ground and compost heap samples a polysaccharide-degrading culture was obtained that produced an endo acting enzyme able to degrade the EPS described. The enzyme hydrolysed the EPS to a large extent, releasing oligomers that mainly consisted out of two repeating units.

Collaboration


Dive into the René Verhoef's collaboration.

Top Co-Authors

Avatar

Henk A. Schols

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A.G.J. Voragen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Vincken

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Cyrill Bussy

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

M. Gallet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Muriel Vayssade

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascale Vigneron

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nipaporn Sengkhamparn

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Matti Siika-aho

VTT Technical Research Centre of Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge