René Vidal
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by René Vidal.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2013
Ehsan Elhamifar; René Vidal
Many real-world problems deal with collections of high-dimensional data, such as images, videos, text, and web documents, DNA microarray data, and more. Often, such high-dimensional data lie close to low-dimensional structures corresponding to several classes or categories to which the data belong. In this paper, we propose and study an algorithm, called sparse subspace clustering, to cluster data points that lie in a union of low-dimensional subspaces. The key idea is that, among the infinitely many possible representations of a data point in terms of other points, a sparse representation corresponds to selecting a few points from the same subspace. This motivates solving a sparse optimization program whose solution is used in a spectral clustering framework to infer the clustering of the data into subspaces. Since solving the sparse optimization program is in general NP-hard, we consider a convex relaxation and show that, under appropriate conditions on the arrangement of the subspaces and the distribution of the data, the proposed minimization program succeeds in recovering the desired sparse representations. The proposed algorithm is efficient and can handle data points near the intersections of subspaces. Another key advantage of the proposed algorithm with respect to the state of the art is that it can deal directly with data nuisances, such as noise, sparse outlying entries, and missing entries, by incorporating the model of the data into the sparse optimization program. We demonstrate the effectiveness of the proposed algorithm through experiments on synthetic data as well as the two real-world problems of motion segmentation and face clustering.
computer vision and pattern recognition | 2007
Roberto Tron; René Vidal
Over the past few years, several methods for segmenting a scene containing multiple rigidly moving objects have been proposed. However, most existing methods have been tested on a handful of sequences only, and each method has been often tested on a different set of sequences. Therefore, the comparison of different methods has been fairly limited. In this paper, we compare four 3D motion segmentation algorithms for affine cameras on a benchmark of 155 motion sequences of checkerboard, traffic, and articulated scenes.
international conference on robotics and automation | 2002
René Vidal; Omid Shakernia; David Hyunchul Shim; Shankar Sastry
We consider the problem of having a team of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) pursue a second team of evaders while concurrently building a map in an unknown environment. We cast the problem in a probabilistic game theoretical framework, and consider two computationally feasible greedy pursuit policies: local-mar and global-max. To implement this scenario on real UAVs and UGVs, we propose a distributed hierarchical hybrid system architecture which emphasizes the autonomy of each agent, yet allows for coordinated team efforts. We describe the implementation of the architecture on a fleet of UAVs and UGVs, detailing components such as high-level pursuit policy computation, map building and interagent communication, and low-level navigation, sensing, and control. We present both simulation and experimental results of real pursuit-evasion games involving our fleet of UAVs and UGVs, and evaluate the pursuit policies relating expected capture times to the speed and intelligence of the evaders and the sensing capabilities of the pursuers.
computer vision and pattern recognition | 2009
Rizwan Chaudhry; Avinash Ravichandran; Gregory D. Hager; René Vidal
System theoretic approaches to action recognition model the dynamics of a scene with linear dynamical systems (LDSs) and perform classification using metrics on the space of LDSs, e.g. Binet-Cauchy kernels. However, such approaches are only applicable to time series data living in a Euclidean space, e.g. joint trajectories extracted from motion capture data or feature point trajectories extracted from video. Much of the success of recent object recognition techniques relies on the use of more complex feature descriptors, such as SIFT descriptors or HOG descriptors, which are essentially histograms. Since histograms live in a non-Euclidean space, we can no longer model their temporal evolution with LDSs, nor can we classify them using a metric for LDSs. In this paper, we propose to represent each frame of a video using a histogram of oriented optical flow (HOOF) and to recognize human actions by classifying HOOF time-series. For this purpose, we propose a generalization of the Binet-Cauchy kernels to nonlinear dynamical systems (NLDS) whose output lives in a non-Euclidean space, e.g. the space of histograms. This can be achieved by using kernels defined on the original non-Euclidean space, leading to a well-defined metric for NLDSs. We use these kernels for the classification of actions in video sequences using (HOOF) as the output of the NLDS. We evaluate our approach to recognition of human actions in several scenarios and achieve encouraging results.
european control conference | 2007
Simone Paoletti; Aleksandar Lj. Juloski; Giancarlo Ferrari-Trecate; René Vidal
This tutorial paper is concerned with the identification of hybrid models, i.e. dynamical models whose behavior is determined by interacting continuous and discrete dynamics. Methods specifically aimed at the identification of models with a hybrid structure are of very recent date. After discussing the main issues and difficulties connected with hybrid system identification, and giving an overview of the related literature, this paper focuses on four different approaches for the identification of switched affine and piecewise affine models, namely an algebraic procedure, a Bayesian procedure, a clustering-based procedure, and a bounded-error procedure. The main features of the selected procedures are presented, and possible interactions to still enhance their effectiveness are suggested.
conference on decision and control | 2003
René Vidal; Stefano Soatto; Yi Ma; Shankar Sastry
We propose an algebraic geometric solution to the identification of a class of linear hybrid systems. We show that the identification of the model parameters can be decoupled from the inference of the hybrid state and the switching mechanism generating the transitions, hence we do not constraint the switches to be separated by a minimum dwell time. The decoupling is obtained from the so-called hybrid decoupling constraint, which establishes a connection between linear hybrid system identification, polynomial factorization and hyperplane clustering. In essence, we represent the number of discrete states n as the degree of a homogeneous polynomial p and the model parameters as factors of p. We then show that one can estimate n from a rank constraint on the data, the coefficients of p from a linear system, and the model parameters from the derivatives of p. The solution is closed form if and only if n/spl les/4. Once the model parameters have been identified, the estimation of the hybrid state becomes a simpler problem. Although our algorithm is designed for noiseless data, we also present simulation results with noisy data.
international conference on hybrid systems computation and control | 2003
René Vidal; Alessandro Chiuso; Stefano Soatto; Shankar Sastry
We analyze the observability of the continuous and discrete states of continuous-time linear hybrid systems. For the class of jump-linear systems, we derive necessary and sufficient conditions that the structural parameters of the model must satisfy in order for filtering and smoothing algorithms to operate correctly. Our conditions are simple rank tests that exploit the geometry of the observability subspaces. For linear hybrid systems, we derive weaker rank conditions that are sufficient to guarantee the uniqueness of the reconstruction of the state trajectory, even when the individual linear systems are unobservable.
computer vision and pattern recognition | 2011
Paolo Favaro; René Vidal; Avinash Ravichandran
We consider the problem of fitting one or more subspaces to a collection of data points drawn from the subspaces and corrupted by noise/outliers. We pose this problem as a rank minimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean, self-expressive, low-rank dictionary plus a matrix of noise/outliers. Our key contribution is to show that, for noisy data, this non-convex problem can be solved very efficiently and in closed form from the SVD of the noisy data matrix. Remarkably, this is true for both one or more subspaces. An important difference with respect to existing methods is that our framework results in a polynomial thresholding of the singular values with minimal shrinkage. Indeed, a particular case of our framework in the case of a single subspace leads to classical PCA, which requires no shrinkage. In the case of multiple subspaces, our framework provides an affinity matrix that can be used to cluster the data according to the sub-spaces. In the case of data corrupted by outliers, a closed-form solution appears elusive. We thus use an augmented Lagrangian optimization framework, which requires a combination of our proposed polynomial thresholding operator with the more traditional shrinkage-thresholding operator.
computer vision and pattern recognition | 2012
Ehsan Elhamifar; Guillermo Sapiro; René Vidal
We consider the problem of finding a few representatives for a dataset, i.e., a subset of data points that efficiently describes the entire dataset. We assume that each data point can be expressed as a linear combination of the representatives and formulate the problem of finding the representatives as a sparse multiple measurement vector problem. In our formulation, both the dictionary and the measurements are given by the data matrix, and the unknown sparse codes select the representatives via convex optimization. In general, we do not assume that the data are low-rank or distributed around cluster centers. When the data do come from a collection of low-rank models, we show that our method automatically selects a few representatives from each low-rank model. We also analyze the geometry of the representatives and discuss their relationship to the vertices of the convex hull of the data. We show that our framework can be extended to detect and reject outliers in datasets, and to efficiently deal with new observations and large datasets. The proposed framework and theoretical foundations are illustrated with examples in video summarization and image classification using representatives.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2010
Shankar R. Rao; Roberto Tron; René Vidal; Yi Ma
In this paper, we study the problem of segmenting tracked feature point trajectories of multiple moving objects in an image sequence. Using the affine camera model, this problem can be cast as the problem of segmenting samples drawn from multiple linear subspaces. In practice, due to limitations of the tracker, occlusions, and the presence of nonrigid objects in the scene, the obtained motion trajectories may contain grossly mistracked features, missing entries, or corrupted entries. In this paper, we develop a robust subspace separation scheme that deals with these practical issues in a unified mathematical framework. Our methods draw strong connections between lossy compression, rank minimization, and sparse representation. We test our methods extensively on the Hopkins155 motion segmentation database and other motion sequences with outliers and missing data. We compare the performance of our methods to state-of-the-art motion segmentation methods based on expectation-maximization and spectral clustering. For data without outliers or missing information, the results of our methods are on par with the state-of-the-art results and, in many cases, exceed them. In addition, our methods give surprisingly good performance in the presence of the three types of pathological trajectories mentioned above. All code and results are publicly available at http://perception.csl.uiuc.edu/coding/motion/.