Renee D. Wright
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renee D. Wright.
Journal of Clinical Investigation | 2008
David S. Ziegler; Renee D. Wright; Santosh Kesari; Madeleine E. Lemieux; Mary A. Tran; Monish Jain; Leigh Zawel; Andrew L. Kung
Multiple receptor tyrosine kinases (RTKs), including PDGFR, have been validated as therapeutic targets in glioblastoma multiforme (GBM), yet inhibitors of RTKs have had limited clinical success. As various antiapoptotic mechanisms render GBM cells resistant to chemo- and radiotherapy, we hypothesized that these antiapoptotic mechanisms also confer resistance to RTK inhibition. We found that in vitro inhibition of PDGFR in human GBM cells initiated the intrinsic pathway of apoptosis, as evidenced by mitochondrial outer membrane permeabilization, but downstream caspase activation was blocked by inhibitor of apoptosis proteins (IAPs). Consistent with this, inhibition of PDGFR combined with small molecule inactivation of IAPs induced apoptosis in human GBM cells in vitro and had synergistic antitumor effects in orthotopic mouse models of GBM and in primary human GBM neurospheres. These results demonstrate that concomitant inhibition of IAPs can overcome resistance to RTK inhibitors in human malignant GBM cells, and suggest that blockade of IAPs has the potential to improve treatment outcomes in patients with GBM.
The FASEB Journal | 2006
Nava Almog; Vanessa Henke; Ludmila M. Flores; Lynn Hlatky; Andrew L. Kung; Renee D. Wright; Raanan Berger; Lloyd Hutchinson; George N. Naumov; Elise Bender; Lars A. Akslen; Eike-Gert Achilles; Judah Folkman
The disease state of cancer appears late in tumor development. Before being diagnosed, a tumor can remain for prolonged periods of time in a dormant state. Dormant human cancer is commonly defined as a microscopic tumor that does not expand in size and remains asymptomatic. Dormant tumors represent an early stage in tumor development and may therefore be a potential target for nontoxic, antiangiogenic therapy that could prevent tumor recurrence. Here, we characterize an experimental model that recapitulates the clinical dormancy of human tumors in mice. We demonstrate that these microscopic dormant cancers switch to the angiogenic phenotype at a predictable time. We further show that while angiogenic liposarcomas expand rapidly after inoculation of tumor cells in mice, nonangiogenic dormant liposarcomas remain microscopic up to one‐third of the normal severe combined immune deficiency (SCID) mouse life span, although they contain proliferating tumor cells. Nonangiogenic dormant tumors follow a similar growth pattern in subcutaneous (s.c.) and orthotopic environments. Throughout the dormancy period, development of intratumoral vessels is impaired. In nonangogenic dormant tumors, small clusters of endothelial cells without lumens are observed early after tumor cell inoculation, but the nonangiogenic tumor cannot sustain these vessels, and they disappear within weeks. There is a concomitant decrease in microvessel density, and the nonangiogenic dormant tumor remains harmless to the host. In contrast, microvessel density in tumors increases rapidly after the angiogenic switch and correlates with rapid expansion of tumor mass. Both tumor types cultured in vitro contain fully transformed cells, but only cells from the nonangiogenic human liposarcoma secrete relatively high levels of the angiogenesis inhibitors thrombospondin‐1 and TIMP‐1. This model suggests that as improved blood or urine molecular biomarkers are developed, the microscopic, nonangiogenic, dormant phase of human cancer may be vulnerable to antiangiogenic therapy years before symptoms, or before anatomical location of a tumor can be detected, by conventional methods.—Almog, N., Henke, V., Flores, L., Hlatky, L., Kung, A. L., Wright, R. D., Berger, R., Hutchinson, L., Naumov, G., Bender, E., Akslen, L., Achilles, E.‐G., Folkman, J. Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J. 20, E1–E10 (2006)
Proceedings of the National Academy of Sciences of the United States of America | 2008
Cynthia K. Hahn; Kenneth N. Ross; Ian M. Warrington; Ralph Mazitschek; Cindy M. Kanegai; Renee D. Wright; Andrew L. Kung; Todd R. Golub; Kimberly Stegmaier
The discovery of new small molecules and their testing in rational combination poses an ongoing problem for rare diseases, in particular, for pediatric cancers such as neuroblastoma. Despite maximal cytotoxic therapy with double autologous stem cell transplantation, outcome remains poor for children with high-stage disease. Because differentiation is aberrant in this malignancy, compounds that modulate transcription, such as histone deacetylase (HDAC) inhibitors, are of particular interest. However, as single agents, HDAC inhibitors have had limited efficacy. In the present study, we use an HDAC inhibitor as an enhancer to screen a small-molecule library for compounds inducing neuroblastoma maturation. To quantify differentiation, we use an enabling gene expression-based screening strategy. The top hit identified in the screen was all-trans-retinoic acid. Secondary assays confirmed greater neuroblastoma differentiation with the combination of an HDAC inhibitor and a retinoid versus either alone. Furthermore, effects of combination therapy were synergistic with respect to inhibition of cellular viability and induction of apoptosis. In a xenograft model of neuroblastoma, animals treated with combination therapy had the longest survival. This work suggests that testing of an HDAC inhibitor and retinoid in combination is warranted for children with neuroblastoma and demonstrates the success of a signature-based screening approach to prioritize compound combinations for testing in rare diseases.
Blood | 2008
Ellen Weisberg; Lolita Banerji; Renee D. Wright; Rosemary Barrett; Arghya Ray; Daisy Moreno; Laurence Catley; Jingrui Jiang; Elizabeth Hall-Meyers; Maira Sauveur-Michel; Richard Stone; Ilene Galinsky; Edward A. Fox; Andrew L. Kung; James D. Griffin
Mediators of PI3K/AKT signaling have been implicated in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Studies have shown that inhibitors of PI3K/AKT signaling, such as wortmannin and LY294002, are able to inhibit CML and AML cell proliferation and synergize with targeted tyrosine kinase inhibitors. We investigated the ability of BAG956, a dual PI3K/PDK-1 inhibitor, to be used in combination with inhibitors of BCR-ABL and mutant FLT3, as well as with the mTOR inhibitor, rapamycin, and the rapamycin derivative, RAD001. BAG956 was shown to block AKT phosphorylation induced by BCR-ABL-, and induce apoptosis of BCR-ABL-expressing cell lines and patient bone marrow cells at concentrations that also inhibit PI3K signaling. Enhancement of the inhibitory effects of the tyrosine kinase inhibitors, imatinib and nilotinib, by BAG956 was demonstrated against BCR-ABL expressing cells both in vitro and in vivo. We have also shown that BAG956 is effective against mutant FLT3-expressing cell lines and AML patient bone marrow cells. Enhancement of the inhibitory effects of the tyrosine kinase inhibitor, PKC412, by BAG956 was demonstrated against mutant FLT3-expressing cells. Finally, BAG956 and rapamycin/RAD001 were shown to combine in a nonantagonistic fashion against BCR-ABL- and mutant FLT3-expressing cells both in vitro and in vivo.
Molecular Cancer Therapeutics | 2007
Ellen Weisberg; Andrew L. Kung; Renee D. Wright; Daisy Moreno; Laurie Catley; Arghya Ray; Leigh Zawel; Mary Tran; Jan Cools; Gary Gilliland; Constantine S. Mitsiades; Douglas W. McMillin; Jingrui Jiang; Elizabeth Hall-Meyers; James D. Griffin
Members of the inhibitor of apoptosis protein (IAP) family play a role in mediating apoptosis. Studies suggest that these proteins may be a viable target in leukemia because they have been found to be variably expressed in acute leukemias and are associated with chemosensitivity, chemoresistance, disease progression, remission, and patient survival. Another promising therapeutic target, FLT3, is mutated in about one third of acute myelogenous leukemia (AML) patients; promising results have recently been achieved in clinical trials investigating the effects of the protein tyrosine kinase inhibitor PKC412 on AML patients harboring mutations in the FLT3 protein. Of growing concern, however, is the development of drug resistance resulting from the emergence of point mutations in targeted tyrosine kinases used for treatment of acute leukemia patients. One approach to overriding resistance is to combine structurally unrelated inhibitors and/or inhibitors of different signaling pathways. The proapoptotic IAP inhibitor, LBW242, was shown in proliferation studies done in vitro to enhance the killing of PKC412-sensitive and PKC412-resistant cell lines expressing mutant FLT3 when combined with either PKC412 or standard cytotoxic agents (doxorubicin and Ara-c). In addition, in an in vivo imaging assay using bioluminescence as a measure of tumor burden, a total of 12 male NCr-nude mice were treated for 10 days with p.o. administration of vehicle, LBW242 (50 mg/kg/day), PKC412 (40 mg/kg/day), or a combination of LBW242 and PKC412; the lowest tumor burden was observed in the drug combination group. Finally, the combination of LBW242 and PKC412 was sufficient to override stromal-mediated viability signaling conferring resistance to PKC412. [Mol Cancer Ther 2007;6(7):1951–61]
Nature Medicine | 2000
Matthew J. Schuchert; Renee D. Wright; Yolonda L. Colson
The facilitating cell is a rare CD8+ bone marrow subpopulation that can enhance allogeneic hematopoietic stem cell engraftment across complete major histocompatibility complex barriers without inducing acute graft-versus-host disease. Here we describe a CD3ɛ-associated complex on the facilitating cell surface that consists of the T-cell receptor β-chain disulfide-linked to a previously unknown 33-kilodalton glycoprotein. Provisionally called FCp33, this glycoprotein does not represent any of the known protein chains or surrogates associated with CD3–T-cell receptor β. Expression of this CD3–T-cell receptor β–FCp33 complex directly correlates with the facilitating cells functional ability to enhance allogeneic stem cell engraftment in vivo.
Molecular Cancer Therapeutics | 2008
Ellen Weisberg; Renee D. Wright; Douglas W. McMillin; Constantine S. Mitsiades; Arghya Ray; Rosemary Barrett; Sophia Adamia; Richard Stone; Ilene Galinsky; Andrew L. Kung; James D. Griffin
Clinical studies of patients with chronic myeloid leukemia revealed that a common pattern of response is a dramatic fall in the circulating population of blast cells, with a minimal or delayed decrease in marrow blasts, suggesting a protective environment. These observations suggest that a greater understanding of the interaction of stromal cells with leukemic cells is essential. Here, we present an in vivo system for monitoring relative tumor accumulation in leukemic mice and residual disease in leukemic mice treated with a tyrosine kinase inhibitor and an in vitro system for identifying integral factors involved in stromal-mediated cytoprotection. Using the in vivo model, we observed high tumor burden/residual disease in tissues characterized as significant sources of hematopoiesis-promoting stroma, with bone marrow stroma most frequently showing the highest accumulation of leukemia in untreated and nilotinib-treated mice as well as partial protection of leukemic cells from the inhibitory effects of nilotinib. These studies, which showed a pattern of leukemia distribution consistent with what is observed in imatinib- and nilotinib-treated chronic myeloid leukemia patients, were followed by a more in-depth analysis of stroma-leukemia cell interactions that lead to protection of leukemia cells from nilotinib-induced cytotoxicity. For the latter, we used the human BCR-ABL-positive cell line, KU812F, and the human bone marrow stroma cell line, HS-5, to more closely approximate the bone marrow–associated cytoprotection observed in drug-treated leukemia patients. This in vitro system helped to elucidate stromal-secreted viability factors that may play a role in stromal-mediated cytoprotection of tyrosine kinase inhibitor-treated leukemia cells. [Mol Cancer Ther 2008;7(5):1121–9]
Blood | 2008
Ellen Weisberg; Johannes Roesel; Guido Bold; Pascal Furet; Jingrui Jiang; Jan Cools; Renee D. Wright; Erik Nelson; Rosemary Barrett; Arghya Ray; Daisy Moreno; Elizabeth Hall-Meyers; Richard Stone; Ilene Galinsky; Edward A. Fox; Gary Gilliland; John F. Daley; Suzan Lazo-Kallanian; Andrew L. Kung; James D. Griffin
An attractive target for therapeutic intervention is constitutively activated, mutant FLT3, which is expressed in a subpopulation of patients with acute myelocyic leukemia (AML) and is generally a poor prognostic indicator in patients under the age of 65 years. PKC412 is one of several mutant FLT3 inhibitors that is undergoing clinical testing, and which is currently in late-stage clinical trials. However, the discovery of drug-resistant leukemic blast cells in PKC412-treated patients with AML has prompted the search for novel, structurally diverse FLT3 inhibitors that could be alternatively used to override drug resistance. Here, we report the potent and selective antiproliferative effects of the novel mutant FLT3 inhibitor NVP-AST487 on primary patient cells and cell lines expressing FLT3-ITD or FLT3 kinase domain point mutants. NVP-AST487, which selectively targets mutant FLT3 protein kinase activity, is also shown to override PKC412 resistance in vitro, and has significant antileukemic activity in an in vivo model of FLT3-ITD(+) leukemia. Finally, the combination of NVP-AST487 with standard chemotherapeutic agents leads to enhanced inhibition of proliferation of mutant FLT3-expressing cells. Thus, we present a novel class of FLT3 inhibitors that displays high selectivity and potency toward FLT3 as a molecular target, and which could potentially be used to override drug resistance in AML.
Nature Chemical Biology | 2017
Ellen Weisberg; Nathan J. Schauer; Jing Yang; Ilaria Lamberto; Laura Doherty; Shruti Bhatt; Atsushi Nonami; Chengcheng Meng; Anthony Letai; Renee D. Wright; Hong Tiv; Prafulla C Gokhale; Maria Stella Ritorto; Virginia De Cesare; Matthias Trost; Alexandra N. Christodoulou; Amanda L. Christie; David M. Weinstock; Sophia Adamia; Richard Stone; Dharminder Chauhan; Kenneth C. Anderson; Hyuk-Soo Seo; Sirano Dhe-Paganon; Martin Sattler; Nathanael S. Gray; James D. Griffin; Sara J. Buhrlage
Oncogenic forms of the kinase FLT3 are important therapeutic targets in acute myeloid leukemia (AML); however, clinical responses to small-molecule kinase inhibitors are short-lived as a result of the rapid emergence of resistance due to point mutations or compensatory increases in FLT3 expression. We sought to develop a complementary pharmacological approach whereby proteasome-mediated FLT3 degradation could be promoted by inhibitors of the deubiquitinating enzymes (DUBs) responsible for cleaving ubiquitin from FLT3. Because the relevant DUBs for FLT3 are not known, we assembled a focused library of most reported small-molecule DUB inhibitors and carried out a cellular phenotypic screen to identify compounds that could induce the degradation of oncogenic FLT3. Subsequent target deconvolution efforts allowed us to identify USP10 as the critical DUB required to stabilize FLT3. Targeting of USP10 showed efficacy in preclinical models of mutant-FLT3 AML, including cell lines, primary patient specimens and mouse models of oncogenic-FLT3-driven leukemia.
Oncotarget | 2017
Ellen Weisberg; Alexandre Puissant; Richard Stone; Martin Sattler; Sara J. Buhrlage; Jing Yang; Paul W. Manley; Chengcheng Meng; Michael Buonopane; John F. Daley; Suzan Lazo; Renee D. Wright; David M. Weinstock; Amanda L. Christie; Kimberly Stegmaier; James D. Griffin
Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.