Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renée L. Finnen is active.

Publication


Featured researches published by Renée L. Finnen.


Journal of Virology | 2003

Interactions between Papillomavirus L1 and L2 Capsid Proteins

Renée L. Finnen; Kimberly D. Erickson; Xiaojiang S. Chen; Robert L. Garcea

ABSTRACT The human papillomavirus (HPV) capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers on a T=7 icosahedral lattice, with substoichiometric amounts of the minor capsid protein, L2. In order to understand the arrangement of L2 within the HPV virion, we have defined and biochemically characterized a domain of L2 that interacts with L1 pentamers. We utilized an in vivo binding assay involving the coexpression of recombinant HPV type 11 (HPV11) L1 and HPV11 glutathione S-transferase (GST) L2 fusion proteins in Escherichia coli. In this system, L1 forms pentamers, GST=L2 associates with these pentamers, and L1+L2 complexes are subsequently isolated by using the GST tag on L2. The stoichiometry of L1:L2 in purified L1+L2 complexes was 5:1, indicating that a single molecule of L2 interacts with an L1 pentamer. Coexpression of HPV11 L1 with deletion mutants of HPV11 L2 defined an L1-binding domain contained within amino acids 396 to 439 near the carboxy terminus of L2. L2 proteins from eight different human and animal papillomavirus serotypes were tested for their ability to interact with HPV11 L1. This analysis targeted a hydrophobic region within the L1-binding domain of L2 as critical for L1 binding. Introduction of negative charges into this hydrophobic region by site-directed mutagenesis disrupted L1 binding. L1-L2 interactions were not significantly disrupted by treatment with high salt concentrations (2 M NaCl), weak detergents, and urea concentrations of up to 2 M, further indicating that L1 binding by this domain is mediated by strong hydrophobic interactions. L1+L2 protein complexes were able to form virus-like particles in vitro at pH 5.2 and also at pH 6.8, a pH that is nonpermissive for assembly of L1 protein alone. Thus, L1/L2 interactions are primarily hydrophobic, encompass a relatively short stretch of amino acids, and have significant effects upon in vitro assembly.


Virology | 2010

Analysis of filamentous process induction and nuclear localization properties of the HSV-2 serine/threonine kinase Us3.

Renée L. Finnen; Bibhuti B. Roy; Hui Zhang; Bruce W. Banfield

The Us3 serine/threonine kinase encoded by all alphaherpesviruses performs several important functions during virus multiplication. For example, expression of pseudorabies virus (PRV) Us3 causes reorganization of the actin cytoskeleton into filamentous processes (FPs) that promote cell-to-cell spread of virus infection. PRV Us3-induced FP formation requires Us3 kinase activity. To determine whether these characteristics were shared by HSV-2 Us3, expression plasmids for wild type (WT) and kinase dead (KD) Us3 variants were constructed. Expression of WT Us3 resulted in robust FP formation whereas expression of the KD Us3 variants did not. In the course of these experiments we noted that KD/K220 mutant Us3s were excluded from the nucleus in comparison to WT or KD/D305A Us3, prompting us to investigate Us3 nuclear shuttling properties. Herein we describe determinants of HSV-2 Us3-induced FP formation and present evidence for the presence of a leucine-rich nuclear export signal within HSV-2 Us3.


Journal of Virology | 2006

Adenovirus E1B 55-Kilodalton Protein Is Required for both Regulation of mRNA Export and Efficient Entry into the Late Phase of Infection in Normal Human Fibroblasts

Ramón A. Gonzalez; Wenying Huang; Renée L. Finnen; Courtney Bragg; S. J. Flint

ABSTRACT The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).


Journal of Virology | 2012

Herpes Simplex Virus 2 Infection Impacts Stress Granule Accumulation

Renée L. Finnen; Kyle R. Pangka; Bruce W. Banfield

ABSTRACT Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2α. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2α phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle.


Journal of Virology | 2014

The Herpes Simplex Virus 2 Virion-Associated Ribonuclease vhs Interferes with Stress Granule Formation

Renée L. Finnen; Thomas J. M. Hay; Bianca Dauber; James R. Smiley; Bruce W. Banfield

ABSTRACT In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. IMPORTANCE Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The identification of a specific viral protein involved in disrupting SG formation is a key step toward understanding how HSV-2 interacts with these antiviral structures. Additionally, this understanding may provide insights into the biology of SGs that may find application in studies on human motor neuron degenerative diseases, like amyotrophic lateral sclerosis (ALS), which may arise as a result of dysregulation of SG formation.


Journal of Virology | 2006

Postentry Events Are Responsible for Restriction of Productive Varicella-Zoster Virus Infection in Chinese Hamster Ovary Cells

Renée L. Finnen; Kara R. Mizokami; Bruce W. Banfield; Guang-Yun Cai; Scott A. Simpson; Lewis I. Pizer; Myron J. Levin

ABSTRACT Productive infection of varicella-zoster virus (VZV) in vitro is restricted almost exclusively to cells derived from humans and other primates. We demonstrate that the restriction of productive VZV infection in CHO-K1 cells occurs downstream of virus entry. Entry of VZV into CHO-K1 cells was characterized by utilizing an ICP4/β-galactosidase reporter gene that has been used previously to study herpes simplex virus type 1 entry. Entry of VZV into CHO-K1 cells involved cell surface interactions with heparan sulfate glycosaminoglycans and a cation-independent mannose-6-phosphate receptor. Lysosomotropic agents inhibited the entry of VZV into CHO-K1 cells, consistent with a low-pH-dependent endocytic mechanism of entry. Infection of CHO-K1 cells by VZV resulted in the production of both immediate early and late gene products, indicating that a block to progeny virus production occurs after the initiation of virus gene expression.


Journal of Virology | 2011

The Alphaherpesvirus Serine/Threonine Kinase Us3 Disrupts Promyelocytic Leukemia Protein Nuclear Bodies

Masany Jung; Renée L. Finnen; Casey E. Neron; Bruce W. Banfield

ABSTRACT Us3, a serine/threonine kinase encoded by all alphaherpesviruses, plays diverse roles during virus infection, including preventing virus-induced apoptosis, facilitating nuclear egress of capsids, stimulating mRNA translation and promoting cell-to-cell spread of virus infection. Given this diversity, the full spectrum of Us3 function may not yet be recognized. We noted, in transiently transfected cells, that herpes simplex virus type 2 (HSV-2) Us3 disrupted promyelocytic leukemia protein nuclear bodies (PML-NBs). However, PML-NB disruption was not observed in cells expressing catalytically inactive HSV-2 Us3. Analysis of PML-NBs in Vero cells transfected with pseudorabies virus (PRV) Us3 and those in Vero cells infected with Us3-null or -repaired PRV strains indicated that PRV Us3 expression also leads to the disruption of PML-NBs. While loss of PML-NBs in response to Us3 expression was prevented by the proteasome inhibitor MG132, Us3-mediated degradation of PML was not observed in infected cells or in transfected cells expressing enhanced green fluorescent protein (EGFP)-tagged PML isoform IV. These findings demonstrate that Us3 orthologues derived from distantly related alphaherpesviruses cause a disruption of PML-NBs in a kinase- and proteasome-dependent manner but, unlike the alphaherpesvirus ICP0 orthologues, do not target PML for degradation.


Journal of Virology | 2013

The Us2 gene product of herpes simplex virus 2 is a membrane-associated ubiquitin-interacting protein.

M.-H. Kang; B. B. Roy; Renée L. Finnen; V. Le Sage; S. M. Johnston; H. Zhang; Bruce W. Banfield

ABSTRACT The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.


Virulence | 2010

Subcellular localization of the alphaherpesvirus serine/threonine kinase Us3 as a determinant of Us3 function

Renée L. Finnen; Bruce W. Banfield

The Us3 serine threonine kinases perform multiple roles in alphaherpesvirus infection and can localize to distinct subcellular compartments. Transient expression of Us3 in cells results in two dramatic alterations of the actin cytoskeleton: production of actin-based filamentous processes (FPs); and breakdown of actin stress fibres giving rise to rounded cell morphology. In our recent study on FPs induced by HSV-2 Us3, we noted that FP formation was diminished when HSV-2 Us3 was trapped within the nucleus following treatment of transfected cells with leptomycin B (LMB). This observation suggested that subcellular localization of Us3 could be a determinant of Us3-induced FP formation. Here, we review what is known regarding the effect of subcellular localization of Us3 on FP production and on actin stress fibre breakdown and discuss the potential significance of studies aimed at defining the requirements for subcellular localization of Us3.


Journal of Virology | 2016

Herpes Simplex Virus 2 Virion Host Shutoff Endoribonuclease Activity Is Required To Disrupt Stress Granule Formation.

Renée L. Finnen; Mingzhao Zhu; Jing Li; Daniel Romo; Bruce W. Banfield

ABSTRACT We previously established that cells infected with herpes simplex virus 2 (HSV-2) are disrupted in their ability to form stress granules (SGs) in response to oxidative stress and that this disruption is mediated by virion host shutoff protein (vhs), a virion-associated endoribonuclease. Here, we test the requirement for vhs endoribonuclease activity in disruption of SG formation. We analyzed the ability of HSV-2 vhs carrying the point mutation D215N, which ablates its endoribonuclease activity, to disrupt SG formation in both transfected and infected cells. We present evidence that ablation of vhs endoribonuclease activity results in defects in vhs-mediated disruption of SG formation. Furthermore, we demonstrate that preformed SGs can be disassembled by HSV-2 infection in a manner that requires vhs endoribonuclease activity and that, befitting this ability to promote SG disassembly, vhs is able to localize to SGs. Together these data indicate that endoribonuclease activity must be maintained in order for vhs to disrupt SG formation. We propose a model whereby vhs-mediated destruction of SG mRNA promotes SG disassembly and may also prevent SG assembly. IMPORTANCE Stress granules (SGs) are transient cytoplasmic structures that form when a cell is exposed to stress. SGs are emerging as potential barriers to viral infection, necessitating a more thorough understanding of their basic biology. We identified virion host shutoff protein (vhs) as a herpes simplex virus 2 (HSV-2) protein capable of disrupting SG formation. As mRNA is a central component of SGs and the best-characterized activity of vhs is as an endoribonuclease specific for mRNA in vivo, we investigated the requirement for vhs endoribonuclease activity in disruption of SG formation. Our studies demonstrate that endoribonuclease activity is required for vhs to disrupt SG formation and, more specifically, that SG disassembly can be driven by vhs endoribonuclease activity. Notably, during the course of these studies we discovered that there is an ordered departure of SG components during their disassembly and, furthermore, that vhs itself has the capacity to localize to SGs.

Collaboration


Dive into the Renée L. Finnen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge