Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renée Schroeder is active.

Publication


Featured researches published by Renée Schroeder.


RNA Biology | 2007

RNA chaperones, RNA annealers and RNA helicases.

Lukas Rajkowitsch; Doris Chen; Sabine Stampfl; Katharina Semrad; Christina Waldsich; Oliver Mayer; Michael F. Jantsch; Robert Konrat; Udo Bläsi; Renée Schroeder

RNA molecules face difficulties when folding into their native structures. In the cell, proteins can assist RNAs in reaching their functionally active states by binding and stabilizing a specific structure or, in a quite opposite way, by interacting in a non-specific manner. These proteins can either facilitate RNA-RNA interactions in a reaction termed RNA annealing, or they can resolve non-functional inhibitory structures. The latter is defined as “RNA chaperone activity” and is the main topic of this review. Here we define RNA chaperone activity in a stringent way and we review those proteins for which RNA chaperone activity has been clearly demonstrated. These proteins belong to quite diverse families such as hnRNPs, histone-like proteins, ribosomal proteins, cold shock domain proteins and viral nucleocapsid proteins. DExD/H-box containing RNA helicases are discussed as a special family of enzymes that restructure RNA or RNPs in an ATP-dependent manner. We further address the different mechanisms RNA chaperones might use to promote folding including the recently proposed theory of protein disorder as a key element in triggering RNA-protein interactions. Finally, we present a new website for proteins with RNA chaperone activity which compiles all the information on these proteins with the perspective to promote the understanding of their activity.


Nature Biotechnology | 2008

The impact of target site accessibility on the design of effective siRNAs

Hakim Tafer; Stefan L. Ameres; Gregor Obernosterer; Christoph A. Gebeshuber; Renée Schroeder; Javier Martinez; Ivo L. Hofacker

Small-interfering RNAs (siRNAs) assemble into RISC, the RNA-induced silencing complex, which cleaves complementary mRNAs. Despite their fluctuating efficacy, siRNAs are widely used to assess gene function. Although this limitation could be ascribed, in part, to variations in the assembly and activation of RISC, downstream events in the RNA interference (RNAi) pathway, such as target site accessibility, have so far not been investigated extensively. In this study we present a comprehensive analysis of target RNA structure effects on RNAi by computing the accessibility of the target site for interaction with the siRNA. Based on our observations, we developed a novel siRNA design tool, RNAxs, by combining known siRNA functionality criteria with target site accessibility. We calibrated our method on two data sets comprising 573 siRNAs for 38 genes, and tested it on an independent set of 360 siRNAs targeting four additional genes. Overall, RNAxs proves to be a robust siRNA selection tool that substantially improves the prediction of highly efficient siRNAs.


Nucleic Acids Research | 2010

Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts

C. Lorenz; Tanja Gesell; B. Zimmermann; U. Schoeberl; I. Bilusic; L. Rajkowitsch; C. Waldsich; A. von Haeseler; Renée Schroeder

An unexpectedly high number of regulatory RNAs have been recently discovered that fine-tune the function of genes at all levels of expression. We employed Genomic SELEX, a method to identify protein-binding RNAs encoded in the genome, to search for further regulatory RNAs in Escherichia coli. We used the global regulator protein Hfq as bait, because it can interact with a large number of RNAs, promoting their interaction. The enriched SELEX pool was subjected to deep sequencing, and 8865 sequences were mapped to the E. coli genome. These short sequences represent genomic Hfq-aptamers and are part of potential regulatory elements within RNA molecules. The motif 5′-AAYAAYAA-3′ was enriched in the selected RNAs and confers low-nanomolar affinity to Hfq. The motif was confirmed to bind Hfq by DMS footprinting. The Hfq aptamers are 4-fold more frequent on the antisense strand of protein coding genes than on the sense strand. They were enriched opposite to translation start sites or opposite to intervening sequences between ORFs in operons. These results expand the repertoire of Hfq targets and also suggest that Hfq might regulate the expression of a large number of genes via interaction with cis-antisense RNAs.


PLOS ONE | 2010

Monitoring Genomic Sequences during SELEX Using High-Throughput Sequencing: Neutral SELEX

Bob Zimmermann; Tanja Gesell; Doris Chen; Christina Lorenz; Renée Schroeder

Background SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection. Methodology/Principal Findings To evaluate SELEX and assess the extent of these effects, we designed and performed a Neutral SELEX experiment omitting the selection step, such that the sequences are under the sole selective pressure of SELEXs amplification steps. Using high-throughput sequencing, we obtained thousands of full-length sequences from the initial genomic library and the pools after each of the 10 rounds of Neutral SELEX. We compared these to sequences obtained from a Genomic SELEX experiment deriving from the same initial library, but screening for RNAs binding with high affinity to the E. coli regulator protein Hfq. With each round of Neutral SELEX, sequences became less stable and changed in nucleotide content, but no sequences were enriched. In contrast, we detected substantial enrichment in the Hfq-selected set with enriched sequences having structural stability similar to the neutral sequences but with significantly different nucleotide selection. Conclusions/Significance Our data indicate that positive selection in SELEX acts independently of the neutral selective requirements imposed on the sequences. We conclude that Genomic SELEX, when combined with high-throughput sequencing of positively and neutrally selected pools, as well as the gnomic library, is a powerful method to identify genomic aptamers.


Nature Protocols | 2006

Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) for the identification of protein-binding RNAs independent of their expression levels.

Christina Lorenz; Frederike von Pelchrzim; Renée Schroeder

Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) is an experimental procedure for the expression condition-independent identification of protein-binding RNAs. RNA libraries derived from genomic DNA are generated via random priming, PCR amplification and in vitro transcription. Libraries consist of genomic sequences of selected size, and fragments are flanked by constant sequences required for amplification and transcription. This RNA pool is then subjected to several rounds of selection and amplification to enrich for RNAs meeting the selection criteria. Various selection criteria are possible. Here we describe selection by affinity to a protein of interest. High-affinity ligands can then be cloned and sequenced to allow their identification. With this method, protein-binding RNAs can be discovered, nucleic acid–protein interactions can be identified, and whole protein–nucleic acid networks can be defined. This method is also suitable for discovering novel genes, including non-protein-coding RNAs, and it complements in silico approaches. It is better suited to detect protein-binding RNAs that are differentially expressed (and therefore absent from many tissues) and low-abundance RNAs than experimental procedures that start from the isolation of expressed RNAs. The protocol takes ∼3 months to complete.


Biochemical Society Transactions | 2005

Assays for the RNA chaperone activity of proteins

Lukas Rajkowitsch; Katharina Semrad; Oliver Mayer; Renée Schroeder

Proteins with RNA chaperone activity promote RNA folding by loosening the structure of misfolded RNAs or by preventing their formation. How these proteins achieve this activity is still unknown, the mechanism is not understood and it is unclear whether this activity is always based on the same mechanism or whether different RNA chaperones use different mechanisms. To address this question, we compare and discuss in this paper a set of assays that have been used to measure RNA chaperone activity. In some assays, this activity is related to the acceleration of monomolecular reactions such as group I intron cis-splicing or anti-termination of transcription. Hereby, it is proposed that the proteins release the RNAs from folding traps, which represent the kinetic barriers during the folding process and involve the loosening of structural elements. In most assays, however, bimolecular reactions are monitored, which include the simple acceleration of annealing of two complementary RNAs, the turnover stimulation of ribozyme cleavage and group I intron trans-splicing. The acceleration of these reactions most probably involves the unfolding of structures that interfere with annealing or folding and may in addition provoke annealing by crowding. Most assays are performed in vitro, where conditions might differ substantially from intracellular conditions, and two assays have been reported that detect RNA chaperone activity in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2014

The double-stranded transcriptome of Escherichia coli

Meghan Lybecker; Bob Zimmermann; Ivana Bilusic; Nadezda Tukhtubaeva; Renée Schroeder

Significance One of the most highly debated questions in the field of transcriptomics is the functionality of antisense transcripts. Are these transcripts merely transcriptional noise and a byproduct of the leakiness of transcriptional repression, or are they functional? Antisense RNAs are being ubiquitously reported, but their functionality remains elusive. Here we report a high-throughput approach to enrich antisense RNAs that are in a double-stranded form with their cognate sense RNAs and thus in a functional complex. This has led to the identification of more than 300 RNase III-dependent potentially functional antisense RNAs in Escherichia coli. These findings reveal a clear picture of the magnitude and degree of functionality of this mostly hidden class of transcripts. Advances in high-throughput transcriptome analyses have revealed hundreds of antisense RNAs (asRNAs) for many bacteria, although few have been characterized, and the number of functional asRNAs remains unknown. We have developed a genome-wide high-throughput method to identify functional asRNAs in vivo. Most mechanisms of gene regulation via asRNAs require an RNA–RNA interaction with its target RNA, and we hypothesized that a functional asRNA would be found in a double strand (dsRNA), duplexed with its cognate RNA in a single cell. We developed a method of isolating dsRNAs from total RNA by immunoprecipitation with a ds-RNA specific antibody. Total RNA and immunoprecipitated dsRNA from Escherichia coli RNase III WT and mutant strains were deep-sequenced. A statistical model was applied to filter for biologically relevant dsRNA regions, which were subsequently categorized by location relative to annotated genes. A total of 316 potentially functional asRNAs were identified in the RNase III mutant strain and are encoded primarily opposite to the 5′ ends of transcripts, but are also found opposite ncRNAs, gene junctions, and the 3′ ends. A total of 21 sense/antisense RNA pairs identified in dsRNAs were confirmed by Northern blot analyses. Most of the RNA steady-state levels were higher or detectable only in the RNase III mutant strain. Taken together, our data indicate that a significant amount of dsRNA is formed in the cell, that RNase III degrades or processes these dsRNAs, and that dsRNA plays a major role in gene regulation in E. coli.


Methods | 2010

Genomic SELEX: a discovery tool for genomic aptamers.

Bob Zimmermann; Ivana Bilusic; Christina Lorenz; Renée Schroeder

Genomic SELEX is a discovery tool for genomic aptamers, which are genomically encoded functional domains in nucleic acid molecules that recognize and bind specific ligands. When combined with genomic libraries and using RNA-binding proteins as baits, Genomic SELEX used with high-throughput sequencing enables the discovery of genomic RNA aptamers and the identification of RNA–protein interaction networks. Here we describe how to construct and analyze genomic libraries, how to choose baits for selections, how to perform the selection procedure and finally how to analyze the enriched sequences derived from deep sequencing. As a control procedure, we recommend performing a “Neutral” SELEX experiment in parallel to the selection, omitting the selection step. This control experiment provides a background signal for comparison with the positively selected pool. We also recommend deep sequencing the initial library in order to facilitate the final in silico analysis of enrichment with respect to the initial levels. Counter selection procedures, using modified or inactive baits, allow strengthening the binding specificity of the winning selected sequences.


RNA Biology | 2014

Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation

Ivana Bilusic; Niko Popitsch; Philipp Rescheneder; Renée Schroeder; Meghan Lybecker

Hfq is a global regulator of gene expression in bacteria undergoing adaptation to changing environmental conditions. Its major function is to promote RNA-RNA interactions between regulatory small RNAs (sRNAs) and their target mRNAs. Previously, we demonstrated that Hfq binds many antisense RNAs (asRNAs) in vitro and hypothesized that Hfq may play a role in regulating gene expression via asRNAs. To investigate the E. coli Hfq-binding transcriptome in more detail, we co-immunoprecipitated and deep-sequenced RNAs bound to Hfq in vivo. We detected many new Hfq-binding sRNAs and observed that almost 300 mRNAs bind to Hfq. Among these, several are known to be sRNA targets. We identified 25 novel RNAs, which are transcribed from within protein coding regions and named them intragenic RNAs (intraRNAs). Furthermore, 67 asRNAs were co-immunoprecipitated with Hfq, demonstrating that Hfq binds antisense transcripts in vivo. Northern blot analyses confirmed the deep sequencing results and demonstrated that many of the novel Hfq-binding RNAs identified are regulated by Hfq.


RNA Biology | 2008

Isolation of small RNA-binding proteins from E. coli: evidence for frequent interaction of RNAs with RNA polymerase.

Nikolai Windbichler; Frederike von Pelchrzim; Oliver Mayer; Edina Csaszar; Renée Schroeder

Bacterial small RNAs (sRNAs) are non-coding RNAs that regulate gene expression enabling cells to adapt to various growth conditions. Assuming that most RNAs require proteins to exert their activities, we purified and identified sRNA-binding factors via affinity chromatography and mass spectrometry. We consistently obtained RNA polymerase ß-subunit, host factor Hfq and ribosomal protein S1 as sRNA-binding proteins in addition to several other factors. Most importantly, we observed that RNA polymerase not only binds several sRNAs but also reacts with them, both cleaving and extending the RNAs at their 3’ ends. The fact that the RNA polymerase reacts with sRNAs maps their interaction site to the active centre cleft of the enzyme and shows that it takes RNAs as template to perform RNA-dependent RNA polymerase activity. We further performed genomic SELEX to isolate RNA polymerase-binding RNAs and obtained a large number of E. coli sequences binding with high affinity to this enzyme. In vivo binding of some of the RNAs to the RNA polymerase was confirmed via co-immunoprecipitation in cell extracts prepared from different growth conditions. Our observations show that RNA polymerase is able to bind and react with many different RNAs and we suggest that RNAs are involved in transcriptional regulation more frequently than anticipated.

Collaboration


Dive into the Renée Schroeder's collaboration.

Top Co-Authors

Avatar

Christina Lorenz

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Bob Zimmermann

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Ivana Bilusic

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Lukas Rajkowitsch

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Oliver Mayer

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Meghan Lybecker

University of Colorado Colorado Springs

View shared research outputs
Top Co-Authors

Avatar

Martina Doetsch

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Sabine Stampfl

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Gesell

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge