Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renfeng Dong is active.

Publication


Featured researches published by Renfeng Dong.


Journal of the American Chemical Society | 2014

Catalytic Iridium-Based Janus Micromotors Powered by Ultralow Levels of Chemical Fuels

Wei Gao; Allen Pei; Renfeng Dong; Joseph Wang

We describe catalytic micromotors powered by remarkably low concentrations of chemical fuel, down to the 0.0000001% level. These Janus micromotors rely on an iridium hemispheric layer for the catalytic decomposition of hydrazine in connection to SiO2 spherical particles. The micromotors are self-propelled at a very high speed (of ~20 body lengths s(-1)) in a 0.001% hydrazine solution due to osmotic effects. Such a low fuel concentration represents a 10,000-fold decrease in the level required for common catalytic nanomotors. The attractive propulsion performance, efficient catalytic energy-harvesting, environmentally triggered swarming behavior, and magnetic control of the new Janus micromotors hold considerable promise for diverse practical applications.


ACS Nano | 2015

Artificial Micromotors in the Mouse’s Stomach: A Step toward in Vivo Use of Synthetic Motors

Wei Gao; Renfeng Dong; Soracha Thamphiwatana; Jinxing Li; Weiwei Gao; Liangfang Zhang; Joseph Wang

Artificial micromotors, operating on locally supplied fuels and performing complex tasks, offer great potential for diverse biomedical applications, including autonomous delivery and release of therapeutic payloads and cell manipulation. Various types of synthetic motors, utilizing different propulsion mechanisms, have been fabricated to operate in biological matrices. However, the performance of these man-made motors has been tested exclusively under in vitro conditions (outside the body); their behavior and functionalities in an in vivo environment (inside the body) remain unknown. Herein, we report an in vivo study of artificial micromotors in a living organism using a mouse model. Such in vivo evaluation examines the distribution, retention, cargo delivery, and acute toxicity profile of synthetic motors in mouse stomach via oral administration. Using zinc-based micromotors as a model, we demonstrate that the acid-driven propulsion in the stomach effectively enhances the binding and retention of the motors as well as of cargo payloads on the stomach wall. The body of the motors gradually dissolves in the gastric acid, autonomously releasing their carried payloads, leaving nothing toxic behind. This work is anticipated to significantly advance the emerging field of nano/micromotors and to open the door to in vivo evaluation and clinical applications of these synthetic motors.


ACS Nano | 2016

Highly Efficient Light-Driven TiO2–Au Janus Micromotors

Renfeng Dong; Qilu Zhang; Wei Gao; Allen Pei; Biye Ren

A highly efficient light-driven photocatalytic TiO2-Au Janus micromotor with wireless steering and velocity control is described. Unlike chemically propelled micromotors which commonly require the addition of surfactants or toxic chemical fuels, the fuel-free Janus micromotor (diameter ∼1.0 μm) can be powered in pure water under an extremely low ultraviolet light intensity (2.5 × 10(-3) W/cm(2)), and with 40 × 10(-3) W/cm(2), they can reach a high speed of 25 body length/s, which is comparable to common Pt-based chemically induced self-electrophoretic Janus micromotors. The photocatalytic propulsion can be switched on and off by incident light modulation. In addition, the speed of the photocatalytic TiO2-Au Janus micromotor can be accelerated by increasing the light intensity or by adding low concentrations of chemical fuel H2O2 (i.e., 0.1%). The attractive fuel-free propulsion performance, fast movement triggering response, low light energy requirement, and precise motion control of the TiO2-Au Janus photocatalytic micromotor hold considerable promise for diverse practical applications.


Advanced Materials | 2015

3D‐Printed Artificial Microfish

Wei Zhu; Jinxing Li; Yew J. Leong; Isaac Rozen; Xin Qu; Renfeng Dong; Zhiguang Wu; Wei Gao; Peter H. Chung; Joseph Wang; Shaochen Chen

Hydrogel microfish featuring biomimetic structures, locomotive capabilities, and functionalized nanoparticles are engineered using a rapid 3D printing platform: microscale continuous -optical printing (μCOP). The 3D-printed -microfish exhibit chemically powered and magnetically guided propulsion, as well as highly efficient detoxification capabilities that highlight the technical versatility of this platform for engineering advanced functional microswimmers for diverse biomedical applications.


Journal of the American Chemical Society | 2015

Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields

Tailin Xu; Fernando Soto; Wei Gao; Renfeng Dong; Victor Garcia-Gradilla; Ernesto Magaña; Xueji Zhang; Joseph Wang

The collective behavior of biological systems has inspired efforts toward the controlled assembly of synthetic nanomotors. Here we demonstrate the use of acoustic fields to induce reversible assembly of catalytic nanomotors, controlled swarm movement, and separation of different nanomotors. The swarming mechanism relies on the interaction between individual nanomotors and the acoustic field, which triggers rapid migration and assembly around the nearest pressure node. Such on-demand assembly of catalytic nanomotors is extremely fast and reversible. Controlled movement of the resulting swarm is illustrated by changing the frequency of the acoustic field. Efficient separation of different types of nanomotors, which assemble in distinct swarming regions, is illustrated. The ability of acoustic fields to regulate the collective behavior of catalytic nanomotors holds considerable promise for a wide range of practical applications.


Journal of the American Chemical Society | 2017

Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water

Renfeng Dong; Yan Hu; Yefei Wu; Wei Gao; Biye Ren; Qinglong Wang; Yuepeng Cai

Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al2O3, Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.


ACS Applied Materials & Interfaces | 2017

Light-Driven Au-WO3@C Janus Micromotors for Rapid Photodegradation of Dye Pollutants

Qilu Zhang; Renfeng Dong; Yefei Wu; Wei Gao; Zihan He; Biye Ren

A novel light-driven Au-WO3@C Janus micromotor based on colloidal carbon WO3 nanoparticle composite spheres (WO3@C) prepared by one-step hydrothermal treatment is described. The Janus micromotors can move in aqueous media at a speed of 16 μm/s under 40 mW/cm2 UV light due to diffusiophoretic effects. The propulsion of such Au-WO3@C Janus micromotors (diameter ∼ 1.0 μm) can be generated by UV light in pure water without any external chemical fuels and readily modulated by light intensity. After depositing a paramagnetic Ni layer between the Au layer and WO3, the motion direction of the micromotor can be precisely controlled by an external magnetic field. Such magnetic micromotors not only facilitate recycling of motors but also promise more possibility of practical applications in the future. Moreover, the Au-WO3@C Janus micromotors show high sensitivity toward extremely low concentrations of sodium-2,6-dichloroindophenol (DCIP) and Rhodamine B (RhB). The moving speed of motors can be significantly accelerated to 26 and 29 μm/s in 5 × 10-4 wt % DCIP and 5 × 10-7 wt % RhB aqueous solutions, respectively, due to the enhanced diffusiophoretic effect, which results from the rapid photocatalytic degradation of DCIP and RhB by WO3. This photocatalytic acceleration of the Au-WO3@C Janus micromotors confirms the self-diffusiophoretic mechanism and opens an opportunity to tune the motility of the motors. This work also offers the light-driven micromotors a considerable potential for detection and rapid photodegradation of dye pollutants in water.


ACS Applied Materials & Interfaces | 2015

Spiropyran-Decorated SiO2–Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly

Qilu Zhang; Renfeng Dong; Xueyi Chang; Biye Ren; Zhen Tong

The controlled self-assembly of self-propelled Janus micromotors may give the micromotors some potential applications in many fields. In this work, we design a kind of SiO2-Pt Janus catalytic micromotor functionalized by spiropyran (SP) moieties on the surface of the SiO2 hemisphere. The spiropyran-modified SiO2-Pt Janus micromotor exhibits autonomous self-propulsion in the presence of hydrogen peroxide fuel in N,N-dimethylformamide (DMF)/H2O (1:1 in volume) mixture. We demonstrate that the self-propelled Janus micromotors can dynamically assemble into multiple motors because of the electrostatic attractions and π-π stacking between MC molecules induced by UV light irradiation (λ = 365 nm) and also quickly disassemble into mono motors when the light is switched to green light (λ = 520 nm) for the first time. Furthermore, the assembled Janus motors can move together automatically with different motion patterns propelled by the hydrogen peroxide fuels upon UV irradiation. The work provides a new approach not only to the development of the potential application of Janus motors but also to the fundamental science of reversible self-assembly and disassembly of Janus micromotors.


Scientific Reports | 2015

Vapor-Driven Propulsion of Catalytic Micromotors.

Renfeng Dong; Jinxing Li; Isaac Rozen; Barath Ezhilan; Tailin Xu; Caleb Christianson; Wei Gao; David Saintillan; Biye Ren; Joseph Wang

Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.


ACS Applied Materials & Interfaces | 2017

Emulsion Hydrogel Soft Motor Actuated by Thermal Stimulation

Hui Wang; Y. Liang; Wei Gao; Renfeng Dong; Chaoyang Wang

An emulsion hydrogel motor (E-H motor), constituted by low-boiling-point oil fuel and a hydrogel matrix, is prepared through a simple yet versatile oil-in-water (O/W) emulsion template method. The E-H motor can be efficiently propelled by the bubbles generated under a thermal stimulus. As thermally induced explosion occurs inside the E-H motor (diameter ∼4.0 mm and length ∼6.0 mm), the gas bubbles resulting from thermotropic phase transition are violently ejected from one side, leading to a fast speed of 14.78 ± 4.82 mm s-1 in a 60 °C aqueous solution. Additionally, multiple water-insoluble organic solvents can serve as the fuel for self-propulsion, which demonstrates the favorable universality of the E-H motor. The magnetic navigation and near-infrared propulsion can be realized through incorporating hydrophilic iron oxide (Fe3O4) nanoparticles and graphene oxide (GO) into the aqueous phase. Moreover, the synchronous integration of GO and enrofloxacin bactericide can enable intelligent targeted cargo transportation and delivery. The attractive self-propulsion performance, precise locomotion control, and formidable integration ability of the emulsion hydrogel-based miniaturized soft motor hold great promise for numerous practical applications.

Collaboration


Dive into the Renfeng Dong's collaboration.

Top Co-Authors

Avatar

Wei Gao

University of California

View shared research outputs
Top Co-Authors

Avatar

Joseph Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Jinxing Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Biye Ren

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Isaac Rozen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qilu Zhang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Barath Ezhilan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter H. Chung

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge