Renguo Xie
Jilin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renguo Xie.
Langmuir | 2014
Yanzhen Cao; Rongfeng Zheng; Xiaohui Ji; Hong Liu; Renguo Xie; Wensheng Yang
Nearly monodispersed spherical silver nanoparticles (Ag NPs) were synthesized by using tannic acid (TA) as both reductant and stabilizer in a 30 °C water bath. The size of the as-prepared Ag NPs could be tuned in a range of 7-66 nm by changing the molar ratio of TA to silver nitrate and pH of the reaction solutions. UV-vis spectra, TEM observations, and temporal evolution of the monomer concentrations for the reactions carried out at different experimental conditions showed that the improved size distribution and size tunability of the Ag NPs were mainly attributed to the use of TA, which could promote the balance of nucleation and growth processes of the NPs effectively. The size of the Ag NPs was extendable up to 200 nm in one-pot fashion by the multi-injection approach. The size-dependent surface-enhanced Raman scattering (SERS) activity of the as-prepared Ag NPs was evaluated, and the NPs with size around 100 nm were identified to show a maximum enhanced factor of 3.6 × 10(5). Moreover, the as-prepared TA-coated Ag NPs presented excellent colloidal stability compared to the conventional citrate-coated ones.
Nano Research | 2016
Xu Chen; Lucheng Peng; Keke Huang; Zhan Shi; Renguo Xie; Wensheng Yang
Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for synthesizing highquality cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I or Cl/Br and I/Br) nanocrystals (NCs) by direct heating of precursors in octadecene in air. Experimental results show that the particle size and composition of as-prepared CsPbX3 nanocrystals can be successfully tuned by a simple variation of reaction temperature. The emission peak positions of the as-prepared nanocrystals can be conveniently tuned from the UV to the NIR (360–700 nm) region, and the quantum yield of the as-obtained samples (green and red emissions) can reach up to 87%. The structures and chemical compositions of the as-obtained NCs were characterized by transmission electron microscopy, X-ray diffraction, and elemental analysis. This proposed synthetic route can yield large amounts of high-quality NCs with a one-batch reaction, usually on the gram scale, and could pave the way for further applications of perovskite-based light-emitting and photovoltaic solar cells.
Nano Research | 2015
Lucheng Peng; Dongze Li; Zhuolei Zhang; Keke Huang; Ying Zhang; Zhan Shi; Renguo Xie; Wensheng Yang
The global demand for resource sustainability is growing. Thus, the development of single-source, environment-friendly colloidal semiconductor nanocrystal (NC) phosphors with broadband emission spectra is highly desirable for use as color converters in white light-emitting diodes (WLEDs). We report herein the gram-scale synthesis of single-source, cadmium-free, dual-emissive Mn-doped Zn–Cu–In–S NCs (d-dots) by a simple, non-injection, low-cost, one-pot approach. This synthesis method led to the formation of NCs with continuously varying compositions in a radial direction because each precursor had a different reactivity. Consequently, the d-dots exhibited two emission bands, one that could be attributed to Mn emission and a second that could be ascribed to the band edge of the Zn–Cu–In–S NCs. The emission peaks assigned to band edge were tunable by modifying the particle size and composition. The prepared d-dots also exhibited the characteristic zero self-absorption, a quantum yield of 46%, and good thermal stability. Combining a commercial blue light-emitting diode (LED) chip with optimized d-dots as color converters gave a high color rendering index of up to 90, Commission Internationale de l’eclairage color coordinates of (0.332, 0.321), and a correlated color temperature of 5,680 K. These results suggest that cadmium-free, thermally stable, single-phase d-dot phosphors have potential applications in WLEDs.
Nanotechnology | 2016
Lucheng Peng; Jing Geng; Lisha Ai; Ying Zhang; Renguo Xie; Wensheng Yang
Phosphor with extremely narrow emission line widths, high brightness, and wide color emission tunability in visible regions is required for display and lighting applications, yet none has been reported in the literature so far. In the present study, single-sized lead halide perovskite (APbX 3; A = CH3NH3 and Cs; X = Cl, Br, and I) nanocrystalline (NC) phosphors were achieved for the first time in a one-pot reaction at room temperature (25 °C). The size-dependent samples, which included four families of CsPbBr3 NCs and exhibited sharp excitonic absorption peaks and pure band gap emission, were directly obtained by simply varying the concentration of ligands. The continuity of the optical spectrum can be successively tuned over the entire UV-visible spectral region (360-610 nm) by preparing CsPbCl3, CsPbI3, and CsPb(Y/Br)3 (Y = Cl and I) NCs with the use of CsPbBr3 NCs as templates by anion exchange while maintaining the size of NCs and high quantum yields of up to 80%. Notably, an emission line width of 10-24 nm, which is completely consistent with that of their single particles, indicates the formation of single-sized NCs. The versatility of the synthetic strategy was validated by extending it to the synthesis of single-sized CH3NH3PbX 3 NCs by simply replacing the cesium precursor by the CH3NH3 X precursor.
RSC Advances | 2016
Miao Zhou; Yanyan Kang; Keke Huang; Zhan Shi; Renguo Xie; Wensheng Yang
Development of efficient and robust abundant electrocatalysts for the hydrogen evolution reaction (HER) remains challenging. Previous studies have demonstrated that Ni2P nanostructures are efficient HER catalysts. In this study, we systematically investigated the synthesis of highly monodisperse, small-sized Ni2P nanoparticles with sizes ranging from 2 nm to 10 nm. Similar nanostructures were used to systematically analyze and compare catalytic activities for the HER. The resulting small-sized product possesses a high accessible surface area and a high density of exposed (001) facets. These favorable structural features render the Ni2P nanoparticles as highly active catalysts for the HER in acidic solutions. Experimental results show that 5.4 nm sample exhibits the optimal HER performance, with an HER overpotential of approximately 78 mV under an electrocatalytic current density of 10 mA cm−2 and a Tafel slope of 41.4 mV per decade. These products also show enhanced stability after a series of 500 potential cycles and constant current density during the test.
Frontiers in chemistry | 2018
Keke Huang; Lucheng Peng; Baijun Liu; Dongze Li; Qiang Ma; Mingyao Zhang; Renguo Xie; Dayang Wang; Wensheng Yang
Highly lipophilic nanocrystals (NCs) of cesium lead halides were successfully embedded in polystyrene (PS) particles by deliberately controlling the swelling of the PS particles in the mixtures of good and bad organic solvents. The resulting composite particles were readily transferred into water via simple stepwise solvent exchange, which yielded water-borne perovskite NC-based inks with outstanding structural and chemical stability in aqueous media. Minimal change in the photoluminescence (PL) of the NCs loaded in the PS particles was visible after 1 month of incubation of the composite particles in water in a broad pH range from 1 to 14, which could otherwise be hardly realized. Loading into the PS particles also made the NCs highly stable against polar organic solvents, such as ethanol, intense light irradiation, and heat. The NC PL intensity slightly changed after the composite particles were heated at 75°C and under irradiation of strong blue light (@365 nm) for 1 h. Furthermore, the PS matrices could effectively inhibit the exchange of halide anions between two differently sized perovskite NCs loaded therein, thereby offering a considerable technical advantage in the application of multiple perovskite NCs for multicolor display in the future.
ChemPhysChem | 2016
Lucheng Peng; Keke Huang; Zhuolei Zhang; Ying Zhang; Zhan Shi; Renguo Xie; Wensheng Yang
This paper presents a mechanistic study on the doping of Zn-Cu-In-S/ZnS core/shell quantum dots (QDs) with Mn by changing the Zn-Cu-In-S QD bandgap and dopant position inside the samples (Zn-Cu-In-S core and ZnS shell). Results show that for the Mn:Zn-Cu-In-S/ZnS system, a Mn-doped emission can be obtained when the bandgap value of the QDs is larger than the energy of Mn-doped emission. Conversely, a bandgap emission is only observed for the doped system when the bandgap value of QDs is smaller than the energy gap of the Mn-doped emission. In the Zn-Cu-In-S/Mn:ZnS systems, doped QDs show dual emissions, consisting of bandgap and Mn dopant emissions, instead of one emission band when the value of the host bandgap is larger than the energy of the Mn-doped emission. These findings indicate that the emission from Mn-doped Zn-Cu-In-S/ZnS core/shell QDs depends on the bandgap of the QDs and the dopant position inside the core/shell material. The critical bandgap of the host materials is estimated to have the same value as the energy of the Mn d-d transition. Subsequently, the mechanism of photoluminescence properties of the Mn:Zn-Cu-In-S/ZnS and Zn-Cu-In-S/Mn:ZnS core/shell QD systems is proposed. Control experiments are then carried out by preparing Mn-doped Zn(Cu)-In-S QDs with various bandgaps, and the results confirm the reliability of the suggested mechanism. Therefore, the proposed mechanism can aid the design and synthesis of novel host materials in fabricating doped QDs.
Chemistry of Materials | 2015
Zhuolei Zhang; Dong Liu; Dongze Li; Keke Huang; Ying Zhang; Zhan Shi; Renguo Xie; Ming-Yong Han; Yue Wang; Wensheng Yang
Nanoscale | 2012
Lili Zhao; Di Jiang; Yue Cai; Xiaohui Ji; Renguo Xie; Wensheng Yang
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2012
Hongli Wu; Xiaohui Ji; Lili Zhao; Shuang Yang; Renguo Xie; Wensheng Yang