Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renhua Li is active.

Publication


Featured researches published by Renhua Li.


PLOS Genetics | 2005

Structural model analysis of multiple quantitative traits.

Renhua Li; Shirng-Wern Tsaih; Keith R. Shockley; Ioannis M. Stylianou; Jon E. Wergedal; Beverly Paigen; Gary A. Churchill

We introduce a method for the analysis of multilocus, multitrait genetic data that provides an intuitive and precise characterization of genetic architecture. We show that it is possible to infer the magnitude and direction of causal relationships among multiple correlated phenotypes and illustrate the technique using body composition and bone density data from mouse intercross populations. Using these techniques we are able to distinguish genetic loci that affect adiposity from those that affect overall body size and thus reveal a shortcoming of standardized measures such as body mass index that are widely used in obesity research. The identification of causal networks sheds light on the nature of genetic heterogeneity and pleiotropy in complex genetic systems.


Gastroenterology | 2003

FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice

Henning Wittenburg; Malcolm A. Lyons; Renhua Li; Gary A. Churchill; Martin C. Carey; Beverly Paigen

BACKGROUND & AIMS Cholesterol gallstone formation is a complex genetic trait. To identify additional cholesterol gallstone susceptibility loci, we performed a quantitative trait locus analysis using an intercross of PERA/Ei and I/LnJ inbred strains of mice. METHODS Mice of both sexes were examined for gallstone weight and evaluated according to a scoring system for the physical chemistry of cholelithiasis during feeding of a lithogenic diet. Intercross offspring were genotyped, and linkage analysis was performed by interval mapping. Differences in messenger RNA expression of positional candidate genes were determined using reverse-transcription and real-time polymerase chain reaction. RESULTS We identified significant loci associated with gallstone weight on chromosomes 10 and 4, named Lith7 and Lith8, respectively (both susceptibility alleles conferred by strain I/LnJ). Positional candidate genes with higher expression in I/LnJ mice are Fxr (official symbol, Nr1h4), encoding the nuclear bile salt receptor, on chromosome 10 and Shp1 (official symbol, Nr0b2), encoding the small heterodimer partner 1, on chromosome 4. A significant locus associated with gallstone score on chromosome 17, named Lith9 (susceptibility allele conferred by strain PERA/Ei), colocalizes with the genes Abcg5 and Abcg8 that encode the canalicular cholesterol transporter. Higher hepatic messenger RNA expression of Abcg5 and Abcg8 in strain PERA/Ei correlates positively with higher biliary cholesterol levels. CONCLUSIONS Our findings suggest a primary role of the nuclear bile salt receptor FXR and the canalicular cholesterol transporter ABCG5/ABCG8 in the genetic susceptibility and pathogenesis of cholesterol cholelithiasis in these strains of inbred mice.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A major quantitative trait locus on chromosome 3 controls colitis severity in IL-10-deficient mice

Mark A. Farmer; John P. Sundberg; Ian J. Bristol; Gary A. Churchill; Renhua Li; Charles O. Elson; Edward H. Leiter

Colitic lesions are much more severe in C3H/HeJBir (C3H) than C57BL/6J (B6) mice after 10 backcrosses of a disrupted interleukin-10 (Il10) gene. This study identified cytokine deficiency-induced colitis susceptibility (Cdcs) modifiers by using quantitative trait locus (QTL) analysis. A segregating F2 population (n = 408) of IL-10-deficient mice was genotyped and necropsied at 6 weeks of age. A major C3H-derived colitogenic QTL (Cdcs1) on chromosome (Chr.) 3 contributed to lesions in both cecum [logarithm of odds ratio (LOD) = 14.6)] and colon (LOD = 26.5) as well as colitis-related phenotypes such as spleen/body weight ratio, mesenteric lymph node/body weight ratio, and secretory IgA levels. Evidence for other C3H QTL on Chr. 1 (Cdcs2) and Chr. 2 (Cdcs3) was obtained. Cdcs1 interacted epistatically or contributed additively with loci on other chromosomes. The resistant B6 background also contributed colitogenic QTL: Cdcs4 (Chr. 8), Cdcs5 (Chr. 17, MHC), and Cdcs6 (Chr. 18). Epistatic interactions between B6 QTL on Chr. 8 and 18 contributing to cecum hyperplasia were particularly striking. In conclusion, a colitogenic susceptibility QTL on Chr. 3 has been shown to exacerbate colitis in combination with modifiers contributed from both parental genomes. The complex nature of interactions among loci in this mouse model system, coupled with separate deleterious contributions from both parental strains, illustrates why detection of human inflammatory bowel disease linkages has proven to be so difficult. A human ortholog of the Chr. 3 QTL, if one exists, would map to Chr. 4q or 1p.


Mammalian Genome | 2004

Sex- and lineage-specific inheritance of depression-like behavior in the rat

Leah C. Solberg; Amber E. Baum; Nasim Ahmadiyeh; Kazuhiro Shimomura; Renhua Li; Fred W. Turek; Gary A. Churchill; Joseph S. Takahashi; Eva E. Redei

The Wistar–Kyoto (WKY) rat exhibits physiological and behavioral similarities to endophenotypes of human depression. In the forced swim test (FST), a well-characterized antidepressant-reversible test for behavioral despair in rodents, WKYs express characteristics of behavioral despair; increased immobility, and decreased climbing. To map genetic loci linked to behavior in the FST, we conducted a quantitative trait loci (QTL) analysis of the segregating F2 generation of a WKY × Fisher 344 (F344) reciprocal intercross. Using linear-model-based genome scans to include covariate (sex or lineage)-by-QTL interaction effects, four significant QTL influencing climbing behavior were identified. In addition, we identified three, seven, and two suggestive QTL for climbing, immobility, and swimming, respectively. One of these loci was pleiotropic, affecting both immobility and climbing. As found in human linkage studies, several of these QTL showed sex- and/or lineage-dependent effects. A simultaneous search strategy identified three epistatic locus pairs for climbing. Multiple regression analysis was employed to characterize the joint contributions of these QTL and to clarify the sex- and lineage-dependent effects. As expected for complex traits, FST behavior is influenced by multiple QTL of small effect, each contributing 5%–10%, accounting for a total 10%–30% of the phenotypic variance. A number of loci mapped in this study share overlapping candidate regions with previously identified emotionality QTL in mice as well as with susceptibility loci recognized by linkage or genome scan analyses for major depression or bipolar disorder in humans. The presence of these loci across species suggests that these QTL may represent universal genetic factors contributing to mood disorders.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Quantitative Trait Loci Analysis for Plasma HDL-Cholesterol Concentrations and Atherosclerosis Susceptibility Between Inbred Mouse Strains C57BL/6J and 129S1/SvImJ

Naoki Ishimori; Renhua Li; Peter M. Kelmenson; Ron Korstanje; Kenneth A. Walsh; Gary A. Churchill; Kristina Forsman-Semb; Beverly Paigen

Objective—The C57BL/6 (B6) and 129 mouse inbred strains differ markedly in plasma HDL-cholesterol concentrations and atherosclerosis susceptibility after a high-fat diet consumption. To identify loci controlling these traits, we performed quantitative trait loci (QTL) analysis. Methods and Results—We fed a high-fat diet to 294 (B6x129S1/SvImJ)F2 females for 14 weeks, measured plasma HDL concentrations and size of aortic fatty-streak lesions, genotyped F2 females, and performed QTL analysis. HDL concentrations were affected by six loci:Hdlq14 and Hdlq15 on chromosome 1 (peaks cM 80 and cM 104, logarithm of odds [LOD] 5.3 and 9.7, respectively); Hdlq16 on chromosome 8 (cM 44, LOD 2.6); Hdlq17 on chromosome 9 (cM 24, LOD 2.9); Hdlq18 on chromosome 12 (cM 20, LOD 5.9); and Hdlq19 on chromosome 2 (cM 90), which interacted with Hdlq15. Atherosclerosis susceptibility was affected by five loci:Ath17 on chromosome 10 (cM 34, LOD 6.6); Ath18 on chromosome 12 (cM 16, LOD 3.7); Ath19 (chromosome 11, cM 60), which interacted with Ath18; and Ath20 (chromosome 10, cM 10), which interacted with Ath21 (chromosome 12, cM 50). Conclusions—We identified six loci for HDL and five loci for atherosclerosis susceptibility in a (B6x129S1/SvImJ)F2 intercross.


Journal of The American Society of Nephrology | 2005

Kinesin Family Member 12 Is a Candidate Polycystic Kidney Disease Modifier in the cpk Mouse

Michal Mrug; Renhua Li; Xiangqin Cui; Trenton R. Schoeb; Gary A. Churchill; Lisa M. Guay-Woodford

The cpk mouse is the most extensively characterized model of autosomal recessive polycystic kidney disease (ARPKD). The major ARPKD-related renal and biliary phenotypes are modulated in F2 mutants by genetic background, suggesting that quantitative trait loci (QTL) modulate disease severity. In 461 F2 cpk mice, kidney length, weight, and volume were scored as quantitative traits (QT), and a semiquantitative method to assess biliary duct number, area (BDA), portal vein area, and total area of each portal field, as well as the severity of cholangitis, was developed. QTL mapping was performed with Pseudomarker v1.02. Candidate genes were identified within the QTL intervals on the basis of expression profiling, reverse transcriptase-PCR, haplotypes, and sequence analysis. The renal QT were normally distributed in the F2 cohort and strongly correlated (P < 0.001). Among the biliary QT, only BDA correlated with the renal QT (P < 0.01). Genome-wide scan identified a major effect QTL on chromosome (Chr) 4 for the renal traits, adjusted BDA, and cholangitis with logarithm of odds scores of 18, 8, and 5, respectively. Regression modeling refined the Chr 4 main effect into an approximately 50-cM region with three distinct QTL peaks at 16, 34, and 54 cM. Kif12, a gene encoding a novel kinesin, mapped beneath the 34 cM QTL peak and has expression level variants and strain-specific sequences that were associated with renal disease severity in affected mice. Therefore, the positional candidate gene, Kif12, fulfills the major criteria for QTL gene discovery established by the Complex Trait Consortium, and, thus, it is proposed that Kif12 is a cpk modifier gene.


Journal of Bone and Mineral Research | 2005

Quantitative Trait Loci That Determine BMD in C57BL/6J and 129S1/SvImJ Inbred Mice.

Naoki Ishimori; Renhua Li; Kenneth A. Walsh; Ron Korstanje; Jarod Rollins; Petko M. Petkov; Mathew T. Pletcher; Tim Wiltshire; Leah Rae Donahue; Clifford J. Rosen; Wesley G. Beamer; Gary A. Churchill; Beverly Paigen

BMD is highly heritable; however, little is known about the genes. To identify loci controlling BMD, we conducted a QTL analysis in a (B6 × 129) F2 population of mice. We report on additional QTLs and also narrow one QTL by combining the data from multiple crosses and through haplotype analysis.


Mammalian Genome | 2005

Association of a lithogenic Abcg5/Abcg8 allele on Chromosome 17 (Lith9) with cholesterol gallstone formation in PERA/EiJ mice

Henning Wittenburg; Malcolm A. Lyons; Renhua Li; Ulrike Kurtz; Joachim Mössner; Gary A. Churchill; Martin C. Carey; Beverly Paigen

To examine further the genetic determinants of cholesterol gallstone susceptibility in inbred mice, we performed quantitative trait locus (QTL) analysis of an intercross of gallstone-susceptible PERA/EiJ and gallstone-resistant DBA/2J inbred mice. Three hundred twenty-four F2 offspring were phenotyped for cholelithiasis during consumption of a lithogenic diet and genotyped using microsatellite markers. Linkage analysis was performed by interval mapping. In addition, we analyzed the combined datasets from this cross and from an independent cross of strain PERA and gallstone-resistant I/Ln mice. QTL mapping detected one significant new gallstone susceptibility (Lith) locus on Chromosome 13 (Lith15). A second significant QTL on Chr 6 (Lith16) confirmed a previous QTL. Furthermore, suggestive QTLs confirmed Lith loci from previous crosses on Chromosomes 1, 2, 5, 16 and X. QTL analysis of the dataset derived from the combined crosses increased the detection power and narrowed confidence intervals of Lith loci on Chromosomes 2, 6, 13, and 16. Moreover, the analysis of combined datasets revealed a shared QTL between both crosses on Chromosome 17 (Lith9). Significantly higher mRNA expression of Abcg5 and Abcg8 in strain PERA compared with strains I/Ln and DBA/2 further substantiated that the PERA allele of Abcg5/Abcg8 was responsible for lithogenicity underlying Lith9.


Journal of Bone and Mineral Research | 2006

Femur mechanical properties in the F2 progeny of an NZB/B1NJ x RF/J cross are regulated predominantly by genetic loci that regulate bone geometry.

Jon E. Wergedal; Cheryl L. Ackert-Bicknell; Shirng-Wern Tsaih; Matilda H.-C. Sheng; Renhua Li; Subburamen Mohan; Wesley G. Beamer; Gary A. Churchill; David J. Baylink

Genetic analysis of an NZB/B1NJ × RF/J cross has identified QTLs for femur mechanical, geometric, and densitometric phenotypes. Most mechanical QTLs were associated with geometric QTLs, strongly suggesting common genetic regulation.


Genetics | 2006

Complex genetic architecture revealed by analysis of high-density lipoprotein cholesterol in chromosome substitution strains and F2 crosses.

Ioannis M. Stylianou; Shirng-Wern Tsaih; Keith DiPetrillo; Naoki Ishimori; Renhua Li; Beverly Paigen; Gary A. Churchill

Intercrosses between inbred lines provide a traditional approach to analysis of polygenic inheritance in model organisms. Chromosome substitution strains (CSSs) have been developed as an alternative to accelerate the pace of gene identification in quantitative trait mapping. We compared a classical intercross and three CSS intercrosses to examine the genetic architecture underlying plasma high-density lipoprotein cholesterol (HDL) levels in the C57BL/6J (B) and A/J (A) mouse strains. The B × A intercross revealed significant quantitative trait loci (QTL) for HDL on chromosomes 1, 4, 8, 15, 17, 18, and 19. A CSS survey revealed that many have significantly different HDL levels compared to the background strain B, including chromosomes with no significant QTL in the intercross and, in some cases (CSS-1, CSS-17), effects that are opposite to those observed in the B × A intercross population. Intercrosses between B and three CSSs (CSS-3, CSS-11, and CSS-8) revealed significant QTL but with some unexpected differences from the B × A intercross. Our inability to predict the results of CSS intercrosses suggests that additional complexity will be revealed by further crosses and that the CSS mapping strategy should be viewed as a complement to, rather than a replacement for, classical intercross mapping.

Collaboration


Dive into the Renhua Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beverly Paigen

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar

Martin C. Carey

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Malcolm A. Lyons

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward H. Leiter

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge