Renjie Dong
China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renjie Dong.
Water Research | 2014
Shubiao Wu; Peter Kuschk; Hans Brix; Jan Vymazal; Renjie Dong
The knowledge on the performance enhancement of nitrogen and organic matter in the expanded constructed wetlands (CWs) with various new designs, configurations, and technology combinations are still not sufficiently summarized. A comprehensive review is accordingly necessary for better understanding of this state-of-the-art-technology for optimum design and new ideas. Considering that the prevailing redox conditions in CWs have a strong effect on removal mechanisms and highly depend on wetland designs and operations, this paper reviews different operation strategies (recirculation, aeration, tidal operation, flow direction reciprocation, and earthworm integration), innovative designs, and configurations (circular-flow corridor wetlands, towery hybrid CWs, baffled subsurface CWs) for the intensifications of the performance. Some new combinations of CWs with technologies in other field for wastewater treatment, such as microbial fuel cell, are also discussed. To improve biofilm development, the selection and utilization of some specific substrates are summarized. Finally, we review the advances in electron donor supply to enhance low C/N wastewater treatment and in thermal insulation against low temperature to maintain CWs running in the cold areas. This paper aims to provide and inspire some new ideas in the development of intensified CWs mainly for the removal of nitrogen and organic matter. The stability and sustainability of these technologies should be further qualified.
Environmental Pollution | 2015
Shubiao Wu; Scott Wallace; Hans Brix; Peter Kuschk; Wesley K. Kirui; Fabio Masi; Renjie Dong
The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plantxa0selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents.
Science of The Total Environment | 2016
Shubiao Wu; Pedro N. Carvalho; Jochen A. Müller; Valsa Remony Manoj; Renjie Dong
Removal of human pathogens from wastewater is a critical factor with linkage to human health. Constructed Wetlands (CWs) are environmental friendly ecosystems that are applicable not only for chemical pollution control, but also for the reduction of pathogens from wastewater. Yet the knowledge on the fate and removal of such indicator bacteria in CWs is still not sufficient due to the complexity of removal mechanisms and influencing factors. This review serves to provide a better understanding of this state-of-the-art technology, which is necessary for further investigations and design development. The fecal indicator bacteria in CWs mainly come from three sources, namely, influent wastewaters, regrowth within the CWs, and animal activities. The properties of microbial contamination vary depending on the different sources. The removal of pathogens is a complex process that is influenced by operational parameters such as hydraulic regime and retention time, vegetation, seasonal fluctuation, and water composition. The most frequent and well-validated removal mechanisms include natural die-off due to starvation or predation, sedimentation and filtration, and adsorption. The concentration of the main fecal indicator bacteria in the effluent was found to be exponentially related to the loading rate. Generally, horizontal subsurface flow CWs have better reduction capacity than free water surface flow CWs, and hybrid wetland systems were found to be the most efficient due to a longer retention time. Further improvement of fecal indicator bacteria removal in CWs is needed, however, levels in CW effluents are still higher than most of the regulation standards for reuse.
Water Research | 2011
Shubiao Wu; Christina Jeschke; Renjie Dong; Heidrun Paschke; Peter Kuschk; Kay Knöller
Current understanding of the dynamics of sulfur compounds inside constructed wetlands is still insufficient to allow a full description of processes involved in sulfur cycling. Experiments in a pilot-scale horizontal subsurface flow constructed wetland treating high sulfate-containing contaminated groundwater were carried out. Application of stable isotope approach combined with hydro-chemical investigations was performed to evaluate the sulfur transformations. In general, under inflow concentration of about 283 mg/L sulfate sulfur, sulfate removal was found to be about 21% with a specific removal rate of 1.75 g/m(2)·d. The presence of sulfide and elemental sulfur in pore water about 17.3 mg/L and 8.5 mg/L, respectively, indicated simultaneously bacterial sulfate reduction and re-oxidation. 70% of the removed sulfate was calculated to be immobilized inside the wetland bed. The significant enrichment of (34)S and (18)O in dissolved sulfate (δ(34)S up to 16‰, compared to average of 5.9‰ in the inflow, and δ(18)O up to 13‰, compared to average of 6.9‰ in the inflow) was observed clearly correlated to the decrease of sulfate loads along the flow path through experimental wetland bed. This enrichment also demonstrated the occurrence of bacterial sulfate reduction as well as demonstrated by the presence of sulfide in the pore water. Moreover, the integral approach shows that bacterial sulfate reduction is not the sole process controlling the isotopic composition of dissolved sulfate in the pore water. The calculated apparent enrichment factor (ɛ = -22‰) for sulfur isotopes from the δ(34)S vs. sulfate mass loss was significantly smaller than required to produce the observed difference in δ(34)S between sulfate and sulfide. It indicated some potential processes superimposing bacterial sulfate reduction, such as direct re-oxidation of sulfide to sulfate by oxygen released from plant roots and/or bacterial disproportionation of elemental sulfur. Furthermore, 41% of residual sulfate was calculated to be from sulfide re-oxidation, which demonstrated that the application of stable isotope approach combined with the common hydro-chemical investigations is not only necessary for a general qualitative evaluation of sulfur transformations in constructed wetlands, but also leads to a quantitative description of intermediate processes.
Journal of Environmental Management | 2015
Chunyan Li; Shubiao Wu; Renjie Dong
This paper demonstrates the potential of tidal flow operated constructed wetland application for the removal dynamics of organic matter, nitrogen and phosphorus. Near-complete removal of organic matter was achieved with a constant removal efficiency of 95%, irrespective of TOC influent loadings ranged from 10 g/m(2) · d to 700 g/m(2) · d. High NH4(+)-N removal at 95% efficiency under influent loading of 17 g/m(2) · d, was stably obtained and was not negatively influenced by increasing influent organic carbon loading rate. Increased influent TOC loading (350 g/m(2) · d to 700 g/m(2) · d) significantly enhanced denitrification capacity and increased TN removal from 30% to 95%. Under tidal flow operation, a higher carbon supply (C/N = 20) for complete TN removal was demonstrated as comparing to that observed in traditional CWs approaches. In addition, the removal of phosphorus was strongly influenced by organic loadings. However, further investigations are needed to elucidate the detailed mechanism that would explain the role of organic loading in phosphorus removal.
Water Research | 2012
Shubiao Wu; Zhongbing Chen; Mareike Braeckevelt; Eva M. Seeger; Renjie Dong; Matthias Kästner; Heidrun Paschke; Anja Hahn; Gernot Kayser; Peter Kuschk
Long-term investigations were carried out in two pilot-scale horizontal subsurface flow constructed wetlands (planted and unplanted) with an iron-rich soil matrix for treating sulphate-rich groundwater which was contaminated with low concentrations of chlorinated hydrocarbons. The temporal and spatial dynamics of pore-water sulphide, Fe(II) and phosphate concentrations in the wetland beds were characterized and the seasonal effects on sulphide production and nitrification inhibition were evaluated. The results demonstrated that the pore-water sulphide concentrations gradually increased from less than 0.2 mg/L in 2005 to annual average concentrations of 15 mg/L in 2010, while the pore-water Fe(II) concentrations decreased from 35.4 mg/L to 0.3 mg/L. From 2005 to 2010, the phosphate removal efficiency declined from 91% to 10% under a relatively constant inflow concentration of 5 mg/L. The pronounced effect of plants was accompanied by a higher sulphate reduction and ammonium oxidation in the planted bed, as compared to the unplanted control. A high tolerance of plants towards sulphide toxicity was observed, which might be due to the detoxification of sulphide by oxygen released by the roots. However, during the period of 2009-2010, the nitrification was negatively impacted by the sulphide production as the reduction in the removal of ammonium from 75% to 42% (with inflow concentration of 55 mg/L) correlated with the increasing mean annual sulphide concentrations. The effect of the detoxification of sulphide and the immobilization of phosphate by the application of the iron-rich soil matrix in the initial years was proven; however, the life-span of this effect should not only be taken into consideration in further design but also in scientific studies.
Science of The Total Environment | 2014
Yongjiang Chang; Shubiao Wu; Tao Zhang; Robert Mazur; Changle Pang; Renjie Dong
The influence of different flooded/drained (F/D) time ratios and different effluent flow rates on the dynamics of nitrogen transformations in three laboratory-scale tidal flow constructed wetland systems (TFCWs-A, B, and C) under varying NH4(+)-N and COD influent loadings was investigated in this study. Good organic matter removal performance up to 90% was achieved for all experimental TFCWs under inflow concentrations of 300 and 150 mg/L regardless of F/D and effluent flow rate. The ammonium removal efficiency of wetland with F/D=3h:3h (55%) was higher than that of the wetland with F/D=5h:1h (47%) under an ammonium inflow concentration of 60 mg/L, indicating the positive effect of longer drained and shorter flooded time on tidal-operated wetlands under nitrification. In addition, more uniform oxygen distribution and better nitrification capacity within the wetland might be achieved with a relatively slow effluent flow rate of 0.025 L/s. TFCWs were shown to be a robust and reliable option to achieve high TN removal of 70% due to its repeated cycle of wet and dry periods, particularly for the treatment of wastewater with high organic content. Moreover, F/D and effluent flow rates of tidal flow constructed wetlands exhibited no significant effect on phosphorus removal in this study. Other techniques, such as pretreatment or post treatment, require further investigation.
Water Research | 2016
Wei Qiao; Kazuyuki Takayanagi; Qian Li; Mohammad Shofie; Fang Gao; Renjie Dong; Yu-You Li
In this study, sulfate was employed as an external electron acceptor for enhancing the degradation of propionate in a thermophilic anaerobic membrane reactor (AnMBR). The organic loading rate (OLR) was increased gradually from the initial 3.9xa0kg-COD/m3d to the inhibiting OLR of 14.6xa0kg-COD/m3d. Feeding was stopped for 98 days but the process did not recover until 500xa0mg/L of sulfate was added into the AnMBR. After that, the enhanced propionate degradation was achieved up to an OLR of 15xa0kg-COD/m3d with a reduced sulfate addition of 300xa0mg/L. However, the thermodynamic calculation indicated that the syntrophic propionic acid degradation, coupled with methanogenesis, was unfavorable with a △G ofxa0+3xa0kJ/mol under the enhanced conditions. Conversely, the utilization of propionic acid by sulfate reduction bacterial (SRB) would be more favourable by having a much lower △G ofxa0-180xa0kJ/mol. The hydrogen conversion was presumed to go through the methanogenesis pathway according to the thermodynamic results. The mechanism of the propionic and hydrogen metabolism was supported as well by comparing the microbial communities with and without sulfate addition. As a result, the role of the sulfate enhancing propionic degradation can be concluded by combining the process performance, thermodynamic, and microbiology results.
Water Research | 2013
Jianbin Guo; Renjie Dong; Joachim Clemens; Wei Wang
Anaerobic digestion of animal waste at a low range of mesophilic conditions has not been well described to date. In this study, laboratory-scale semi-continuously fed anaerobic digesters treating pig manure were operated at 28 and 38 °C with organic loading rates ranging from 1.3 to 4.3 g ODM L(-1) d(-1). The estimated biomass yield was higher at 28 °C (0.065 g VSS g(-1) COD(removed)) than at 38 °C (0.016 g VSS g(-1) COD(removed)). The resulting calculated biomass concentration range at 28 and 38 °C was 1.2-2.4 and 0.3-0.6g VSS L(-1), respectively, which fitted well with a Michaelis-Menten type function. These VSS results are one or two orders of magnitude lower than previously reported for manure-fed digesters. Although maximum specific substrate utilisation rate at 38 °C is five-fold that at 28 °C, higher biomass yield in the digester at 28 °C seemed to compensate for the adverse effects of lower temperature on digester performance.
Engineering in Life Sciences | 2012
Jianbin Guo; Joachim Clemens; Xiaoping Li; Pan Xu; Renjie Dong
Many Chinese biogas plants run at the lower range of mesophilic conditions. In this study, the performance of a representative agricultural biogas plant operating at ambient temperature was evaluated by mass balance and routine chemical analysis. Fluxes into and out of the biogas plant (organic dry matter [ODM], biogas production, CH4, and CO2 concentration) were analyzed for seven weeks. The biogas plant was operated with mixed substrate at an extremely low organic loading rate (0.4–0.8 kg ODM m−3 d−1), with a hydraulic retention time (HRT) of 35 days. Between 68% and 73% of ODM fed to the plant was converted to biogas. The measured methane production on‐site was higher than the estimated methane production derived from ODM input/output data for the plant and methane production data from batch tests on the individual substrates at 37°C and 20°C. Suggested reasons were: (i) difficulties in precise determination of mass fluxes, (ii) sediment in the biogas plant contributing to biogas production, (iii) stimulation of biogas production by mixed substrate, and (iv) potential gas production of activated organic matters from the time before the monitoring program. A heating system and power unit are suggested to improve the overall performance of the digester.