Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renkun Chen is active.

Publication


Featured researches published by Renkun Chen.


Nature | 2008

Enhanced thermoelectric performance of rough silicon nanowires

Allon I. Hochbaum; Renkun Chen; Raul Diaz Delgado; Wenjie Liang; Erik C. Garnett; Mark Najarian; Arun Majumdar; Peidong Yang

Approximately 90 per cent of the world’s power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30–40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2–4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20–300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.


Nano Letters | 2009

Nanowires for Enhanced Boiling Heat Transfer

Renkun Chen; Ming Chang Lu; Vinod Srinivasan; Zhijie Wang; Hyung Hee Cho; Arun Majumdar

Boiling is a common mechanism for liquid-vapor phase transition and is widely exploited in power generation and refrigeration devices and systems. The efficacy of boiling heat transfer is characterized by two parameters: (a) heat transfer coefficient (HTC) or the thermal conductance; (b) the critical heat flux (CHF) limit that demarcates the transition from high HTC to very low HTC. While increasing the CHF and the HTC has significant impact on system-level energy efficiency, safety, and cost, their values for water and other heat transfer fluids have essentially remained unchanged for many decades. Here we report that the high surface tension forces offered by liquids in nanowire arrays made of Si and Cu can be exploited to increase both the CHF and the HTC by more than 100%.


Nano Letters | 2010

Fabrication of Microdevices with Integrated Nanowires for Investigating Low-Dimensional Phonon Transport

Kedar Hippalgaonkar; Baoling Huang; Renkun Chen; Karma Sawyer; Peter Ercius; Arun Majumdar

Phonons in low-dimensional structures with feature sizes on the order of the phonon wavelength may be coherently scattered by the boundary. This may give rise to a new regime of heat conduction, which can impact thermal energy transport and conversion. Traditional methods used to investigate phonon transport in one-dimensional structures suffer from uncertainty due to contact resistance, defects, and limited control over sample dimensions. We have developed a new batch-fabrication technique for suspended microdevices with integrated silicon nanowires from silicon-on-insulator (SOI) wafers. The nanowires are defect-free and have extremely high aspect ratios (length/critical dimension >2000). The nanowire dimensions (length and critical dimension) can be precisely controlled during fabrication. With these novel devices, phonon transport in silicon nanowires is systematically investigated. The room temperature thermal conductivity of nanowires with critical width around 80 nm is about 20 W/(m K) and much lower than that in smooth VLS wires. This suggests that the surface morphology of the structures has a significant effect on the thermal conductivity, but this phenomenon is not currently understood. This fabrication technique can also be used for thermal transport investigation in a wide-range of low-dimensional structures.


Journal of Applied Physics | 2012

Thermal transport in phononic crystals: The role of zone folding effect

Edward Dechaumphai; Renkun Chen

Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding ...


ACS Nano | 2011

Observation of Anisotropy in Thermal Conductivity of Individual Single- Crystalline Bismuth Nanowires

Jong Wook Roh; Kedar Hippalgaonkar; Jin Hee Ham; Renkun Chen; Ming Zhi Li; Peter Ercius; Arun Majumdar; Woochul Kim; Wooyoung Lee

The thermal conductivity of individual single-crystalline Bi nanowires grown by the on-film formation of nanowires (ON-OFF) has been investigated. We observed that the thermal conductivity of single-crystalline Bi nanowires is highly anisotropic. Thermal conductivity of nanowires (diameter ∼100 nm) in the off-axis [102] and [110] directions exhibits a difference of ∼7.0 W/m·K. The thermal conductivity in both growth directions is diameter-dependent, which indicates that thermal transport through the individual Bi nanowires is limited by boundary scattering of both electrons and phonons. This huge anisotropy in thermal conductivities of Bi nanowires suggests the importance of direction-dependent characterization of charge, thermal transport, and thermoelectric properties of Bi nanowires.


Nano Letters | 2015

Sub-amorphous Thermal Conductivity in Ultrathin Crystalline Silicon Nanotubes

Matthew C. Wingert; Soonshin Kwon; Ming Hu; Dimos Poulikakos; Jie Xiang; Renkun Chen

Thermal transport behavior in nanostructures has become increasingly important for understanding and designing next generation electronic and energy devices. This has fueled vibrant research targeting both the causes and ability to induce extraordinary reductions of thermal conductivity in crystalline materials, which has predominantly been achieved by understanding that the phonon mean free path (MFP) is limited by the characteristic size of crystalline nanostructures, known as the boundary scattering or Casimir limit. Herein, by using a highly sensitive measurement system, we show that crystalline Si (c-Si) nanotubes (NTs) with shell thickness as thin as ∼5 nm exhibit a low thermal conductivity of ∼1.1 W m(-1) K(-1). Importantly, this value is lower than the apparent boundary scattering limit and is even about 30% lower than the measured value for amorphous Si (a-Si) NTs with similar geometries. This finding diverges from the prevailing general notion that amorphous materials represent the lower limit of thermal transport but can be explained by the strong elastic softening effect observed in the c-Si NTs, measured as a 6-fold reduction in Youngs modulus compared to bulk Si and nearly half that of the a-Si NTs. These results illustrate the potent prospect of employing the elastic softening effect to engineer lower than amorphous, or subamorphous, thermal conductivity in ultrathin crystalline nanostructures.


Review of Scientific Instruments | 2012

Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge

Matthew C. Wingert; Zack C. Y. Chen; Shooshin Kwon; Jie Xiang; Renkun Chen

Thermal conductivity of one-dimensional nanostructures, such as nanowires, nanotubes, and polymer chains, is of significant interest for understanding nanoscale thermal transport phenomena as well as for practical applications in nanoelectronics, energy conversion, and thermal management. Various techniques have been developed during the past decade for measuring this fundamental quantity at the individual nanostructure level. However, the sensitivity of these techniques is generally limited to 1 × 10(-9) W∕K, which is inadequate for small diameter nanostructures that potentially possess thermal conductance ranging between 10(-11) and 10(-10) W∕K. In this paper, we demonstrate an experimental technique which is capable of measuring thermal conductance of ∼10(-11) W∕K. The improved sensitivity is achieved by using an on-chip Wheatstone bridge circuit that overcomes several instrumentation issues. It provides a more effective method of characterizing the thermal properties of smaller and less conductive one-dimensional nanostructures. The best sensitivity experimentally achieved experienced a noise equivalent temperature below 0.5 mK and a minimum conductance measurement of 1 × 10(-11) W∕K. Measuring the temperature fluctuation of both the four-point and bridge measurements over a 4 h time period shows a reduction in measured temperature fluctuation from 100 mK to 0.6 mK. Measurement of a 15 nm Ge nanowire and background conductance signal with no wire present demonstrates the increased sensitivity of the bridge method over the traditional four-point I-V measurement. This ultra-sensitive measurement platform allows for thermal measurements of materials at new size scales and will improve our understanding of thermal transport in nanoscale structures.


Nano Letters | 2013

Gate-Modulated Thermoelectric Power Factor of Hole Gas in Ge–Si Core–Shell Nanowires

Jaeyun Moon; Ji-Hun Kim; Zack C. Y. Chen; Jie Xiang; Renkun Chen

We experimentally studied the thermoelectric power factor of hole gas in individual Ge-Si core-shell nanowires with Ge core diameters ranging from 11 to 25 nm. The Ge cores are dopant-free, but the Fermi level in the cores is pinned by surface and defect states in the epitaxial Si shell thereby doping the cores into the degenerate regime. This doping mechanism avoids the high concentration of dopants usually encountered in bulk thermoelectric materials and provides a unique opportunity to enhance the carrier mobility with suppressed ionized impurity scattering. Moreover, the carrier concentration in small diameter nanowires has also been effectively modulated by field effect, allowing one to probe the electrical conductivity and thermopower within a wide range of carrier concentrations, which is crucial to understand the thermoelectric transport behavior. We found that the thermopower of nanowires with Ge core diameters down to 11 nm still follows the behavior of bulk Ge. As a result, the power factor is found to be closely correlated with the carrier mobility, which is higher than that of bulk Ge in one of the core-shell nanowires studied here.


Nanoscale | 2013

Phase transformation and thermoelectric properties of bismuth-telluride nanowires

Cheng-Lun Hsin; Matthew C. Wingert; Chun-Wei Huang; Hua Guo; Ten-Jen Shih; Joonki Suh; Kevin Wang; J. Wu; Wen-Wei Wu; Renkun Chen

Thermoelectric materials have attracted much attention due to the current interest in energy conversion and recent advancements in nano-engineering. A simple approach to synthesize BiTe and Bi2Te3 micro/nanowires was developed by combining solution chemistry reactions and catalyst-free vapor-solid growth. A pathway to transform the as-grown BiTe nanostructures into Bi2Te3 can be identified through the Bi-Te phase diagram. Structural characterization of these products was identified using standard microscopy practices. Meanwhile, thermoelectric properties of individual Bi-Te compound micro/nanowires were determined by the suspended microdevice technique. This approach provides an applicable route to synthesize advanced high performance thermoelectric materials in quantities and can be used for a wide range of low-dimensional structures.


Physical Review B | 2016

Strain-induced nonsymmorphic symmetry breaking and removal of Dirac semimetallic nodal line in an orthoperovskite iridate

Jian Liu; Dominik Kriegner; Lukas Horak; Danilo Puggioni; C. Rayan Serrao; Renkun Chen; Di Yi; Carlos Frontera; V. Holy; Ashvin Vishwanath; James M. Rondinelli; X. Marti; R. Ramesh

By using a combination of heteroepitaxial growth, structure refinement based on synchrotron x-ray diffraction and first-principles calculations, we show that the symmetry-protected Dirac line nodes in the topological semimetallic perovskite SrIrO3 can be lifted simply by applying epitaxial constraints. In particular, the Dirac gap opens without breaking the Pbnm mirror symmetry. In virtue of a symmetry-breaking analysis, we demonstrate that the original symmetry protection is related to the n-glide operation, which can be selectively broken by different heteroepitaxial structures. This symmetry protection renders the nodal line a nonsymmorphic Dirac semimetallic state. The results highlight the vital role of crystal symmetry in spin-orbit-coupled correlated oxides and provide a foundation for experimental realization of topological insulators in iridate-based heterostructures.

Collaboration


Dive into the Renkun Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sungho Jin

University of California

View shared research outputs
Top Co-Authors

Avatar

Jaeyun Moon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tae Kyoung Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhaowei Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Soonshin Kwon

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianlin Zheng

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge