Renos A. Votsis
Cyprus University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renos A. Votsis.
The Open Construction and Building Technology Journal | 2015
Elia A. Tantele; Renos A. Votsis; Toula Onoufriou
Preventative Maintenance (PM) measures can be used to postpone/delay the initiation of corrosion from chlo- ride attack in reinforced concrete bridges. However there are a lot of uncertainties that influence their degree of effective- ness. Also the time-application of these measures can raise a conflict between safety requirements and budgets. This paper presents a stochastic approach for estimating the effectiveness of different PM measures. Additionally a two-stage optimi- sation methodology using the principles of Genetic Algorithms (GA) is developed to address the problem of the time- application by linking the effectiveness with the cost to produce optimum PM strategies. Futhermore, the role of the pre- sented time-dependent probabilistic approach in the proposed two-stage GA methodology for obtaining optimum PM strategies is demonstrated.
Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014) | 2014
George Christou; Elia A. Tantele; Renos A. Votsis
The deterioration of structures due to corrosion is probably the most significant factor for their damaging condition and the need for maintenance. Corrosion mechanisms depend on the environmental conditions and the geographic characteristics of the area. In this paper a condition assessment methodology is presented through an application on a deteriorated building in Cyprus. The methodologys starting point is the collection of information through Google Earth for classification of buildings in regions based on their environmental and geographic characteristics. Through this screening process, buildings in each defined region are selected for evaluation. The following steps of the methodology include testing on selected structural members for the estimation of the compression strength and the depth of carbonation. The results of the case study, are used from the responsible engineer to evaluate the current condition of the building regarding its structural integrity and the effect of corrosion. The testing data showed that the current building strength is lower than the codes requirements and that carbonation induced corrosion must be addressed to prevent further damage.
Natural Hazards | 2016
Elia A. Tantele; Renos A. Votsis; Chris Danezis; Constantina Anastasiou; Nikolas Georgiou
Carbonation-induced corrosion of the steel reinforcement is the major deterioration factor of the RC infrastructures in urban areas. Carbonation progress in concrete is influenced by the exposure and environmental conditions prevailing at each area. Therefore, the rate of deterioration due to carbonation varies at different areas. Field measurements can quantify this carbonation progress for specific structures and areas. However, the scattered nature of individual field data offers little information to be considered for the assessment of existing structures or the design of new structures. This study aims to bridge this gap and shows that individual field data can be combined to characterise an area using GIS mapping tools. A generated map can depict the variability of carbonation progress with the geographical location. Measurements of the carbonation depth of several buildings at different locations in the Limassol district have been provided by a construction laboratory. Such information can be used to depict the carbonation progress on each structure through the calculation of the carbonation factor and then portray its value using mapping techniques. The result is a corrosion risk map of the Limassol district depicting the variability of carbonation progress with geographical locations. This can be used by engineers and managing authorities as a prediction tool for the initiation of carbonation-induced corrosion in existing structures and also at design stage to set the durability requirements of the concrete cover depth.
Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016) | 2016
Nikolas Georgiou; Constantina Anastasiou; Elia A. Tantele; Renos A. Votsis; Chris Danezis
Corrosion of steel reinforcement is the major deterioration factor of the RC infrastructures. Several factors are contributing towards increasing the corrosion risk like the exposure and environmental conditions which are a function of the geographical location of the infrastructure. Information for these conditions and their affected areas can be proved valuable at design stage and/or during maintenance planning. This study aims to relate corrosion risk of RC infrastructures with their geographical location. The corrosion risk is quantified through data from NDT methods and subsequently correlated with its location. Therefore high risk areas with structures prone to corrosion deterioration are identified. The latter is implemented via GIS tools in order to create maps that describe how corrosion risk is related to the location of each structure. Two GIS methods are suggested, the grid system and the use of classified areas. Corrosion data has been collected from labs about various constructions in Cyprus and used in conjunction with GIS tools to provide useful information on corrosion identification. The outcome is a digitized map of the Limassol area which indicates the risks levels associated with corrosion of the steel reinforcement.
The Open Construction and Building Technology Journal | 2018
Nicholas Kyriakides; Ahmad Sohaib; Kypros Pilakoutas; Kyriakos Neocleous; Christis Z. Chrysostomou; Elia A. Tantele; Renos A. Votsis
Background: Reinforced Concrete (RC) buildings with no seismic design exhibit degrading behaviour under severe seismic loading due to non-ductile brittle failure modes. The seismic performance of such substandard structures can be predicted using existing capacity demand diagram methods through the idealization of the non-linear capacity curve of the degrading system, and its comparison with a reduced earthquake demand spectrum. Objective: Modern non-linear static methods for derivation of capacity curves incorporate idealization assumptions that are too simplistic and do not apply for sub-standard buildings. The conventional idealisation procedures cannot maintain the true strength degradation behaviour of such structures in the post-peak part, and thus may lead to significant errors in seismic performance prediction especially in the cases of brittle failure modes dominating the response. Method: In order to increase the accuracy of the prediction, an alternative idealisation procedure using equivalent elastic perfectly plastic systems is proposed herein that can be used in conjunction with any capacity demand diagram method. Results: Moreover, the performance of this improved equivalent linearization procedure in predicting the response of an RC frame is assessed herein. Conclusion: This improved idealization procedure has been proven to reduce the error in the seismic performance prediction as compared to seismic shaking table test results [1] and will be further investigated probabilistically herein.
Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018) | 2018
Elia A. Tantele; Renos A. Votsis; Nicholas Kyriakides
The ongoing degradation of structures is associated with expensive maintenance and the resulting decline in safety, force the engineer to search for structural health monitoring tools that will be fast, effective, cover large areas and cost as minimum as possible. In this context the thermal imaging cameras are an ideal monitoring tool; with the radical development of higher resolution thermal imaging, the decreasing cost of the camera and its portable size makes this technology promising to accomplish the requirements of modern structural monitoring. Thermal imaging camera uses algorithms to interpret visual displays of the amount of infrared energy emitted, transmitted and reflected by an object and form images that are invisible to the human eye. Therefore, the thermal imaging technology can be used as a tool to help the engineer gain better insight and viable information and thus enabling the structure to retain/sustain its function, form and strength within acceptable limits under operational loading. This paper presents applications of this technology for assessing the integrity of structures along with possible trends and gains on different areas of structural integrity, such as the detection of corrosion in steel rebars embedded in RC structures and the chloride contents on concrete surface.
Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018) | 2018
Renos A. Votsis; Elia A. Tantele; Nicholas Kyriakides; Andreas Christofe; Christis Z. Chrysostomou
The building stock should be in operational and reliable state in order to ensure primarily the safety of the users. In addition to safety, nowadays the comfort of the users is of prime importance. To satisfy the required comfort levels the user should consume energy, in the form of heating, cooling etc. Therefore this ongoing trend to satisfy these conditions, results in buildings which are safer, more economic to operate and more sustainable. Taking into account economic, technical, durability and environmental factors there is the need for a holistic approach for the optimum performance of buildings for structural integrity and energy efficiency. Current practice evolves around building solutions that isolate each deficiency and proposes solutions to enhance each of the two separately. In the last few years, from a sustainability perspective, emphasis is placed on developing an integrated system for buildings that will improve simultaneously both the structural integrity and the energy performance and should be preferred over individual actions. This study investigates independent building and/or retrofit actions applied for structural strengthening and energy performance improvements that have the potential to be combined into an integrated system to enhance the overall performance of buildings. Such multidisciplinary approach will ensure that new and existing buildings satisfy both structural safety and energy efficiency targets in a more economic and effective manner. Furthermore, as first step in this direction, an experimental test program was conducted in the laboratory to examine the benefit of applying thermal insulation in the form of polystyrene on the durability context by reducing the building’s material deterioration due to environmental effects.
Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016) | 2016
Elia A. Tantele; Renos A. Votsis; Toula Onoufriou; Marios Milis; George Kareklas
The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridges structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.
5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering | 2015
Zehra Cagnan; Christis Z. Chrysostomou; Nicholas Kyriakides; Renos A. Votsis
Within the scope of this study, dynamic response of the St. Nicholas Cathedral in Cyprus that dates back to the 13th century was assessed based on obtained earthquake records. This structure resembles to the Rheims Cathedral of France with a nave of seven bays ending in a polygonal apse, together with flanking aisles ending in apsidal chapels of similar shape. According to historical records, it sustained heavy earthquake damage twice to its roof structure and flying buttresses. The main construction material used at this structure is calcarenite. Back in 2011, a strong-motion network was installed at the cathedral, which recorded a series of small to moderate magnitude events since then. This strong motion network consisting of 10 tri-axial accelerometers is the only active structural health monitoring system in Cyprus. In this article, the time-domain and frequency-domain analysis of this data is presented.
Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014) | 2014
Renos A. Votsis; Nicholas Kyriakides; Elia A. Tantele; Christis Z. Chrysostomou; Toula Onoufriou
The aims of the bridge management authorities are to ensure that bridges fulfil their purpose and functionality during their design life. So, it is important to identify and quantify the deterioration of the structural condition early so that a timely application of an intervention will avoid more serious problems and increased costs at a later stage. A measure to enhance the effectiveness of the existing structural evaluation by visual inspection is instrumental monitoring using sensors. The activities performed in this process belong to the field of Structural Health Monitoring (SHM). The SHM offers opportunities for continuous or periodic monitoring on bridges and technological advances allow nowadays the employment of wireless sensors networks (WSN) for this task. A SHM application using WSN was implemented on a multi-span reinforced concrete (RC) highway bridge in Limassol with the objective to study its dynamic characteristics and performance. Part of the specific bridge will be replaced and this offered a unique opportunity for measurements before and after construction so that apparent changes in the dynamic characteristics of the bridge will be identified after the repairing work. The measurements provided indications on the frequencies and mode shapes of the bridge and the response amplitude during the passing of traffic. The latter enabled the investigation of the dependency of the bridge’s structural damping to the amplitude of vibration induced by the passing of traffic. The results showed that as the excitation increases the magnitude of modal damping increases as well.