Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renu A. Heller is active.

Publication


Featured researches published by Renu A. Heller.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans

Fengrong Zuo; Naftali Kaminski; Elsie M. Eugui; John Allard; Zohar Yakhini; Amir Ben-Dor; Lance Lollini; David R. Morris; Yong Kim; Barbara Delustro; Dean Sheppard; Annie Pardo; Moisés Selman; Renu A. Heller

Pulmonary fibrosis is a progressive and largely untreatable group of disorders that affects up to 100,000 people on any given day in the United States. To elucidate the molecular mechanisms that lead to end-stage human pulmonary fibrosis we analyzed samples from patients with histologically proven pulmonary fibrosis (usual interstitial pneumonia) by using oligonucleotide microarrays. Gene expression patterns clearly distinguished normal from fibrotic lungs. Many of the genes that were significantly increased in fibrotic lungs encoded proteins associated with extracellular matrix formation and degradation and proteins expressed in smooth muscle. Using a combined set of scoring systems we determined that matrilysin (matrix metalloproteinase 7), a metalloprotease not previously associated with pulmonary fibrosis, was the most informative increased gene in our data set. Immunohistochemisry demonstrated increased expression of matrilysin protein in fibrotic lungs. Furthermore, matrilysin knockout mice were dramatically protected from pulmonary fibrosis in response to intratracheal bleomycin. Our results identify matrilysin as a mediator of pulmonary fibrosis and a potential therapeutic target. They also illustrate the power of global gene expression analysis of human tissue samples to identify molecular pathways involved in clinical disease.


American Journal of Pathology | 2003

Global Expression Profiling of Fibroblast Responses to Transforming Growth Factor-β1 Reveals the Induction of Inhibitor of Differentiation-1 and Provides Evidence of Smooth Muscle Cell Phenotypic Switching

Rachel C. Chambers; Patricia Leoni; Naftali Kaminski; Geoffrey J. Laurent; Renu A. Heller

Transforming growth factor-beta1 (TGF-beta1) plays a central role in promoting extracellular matrix protein deposition by promoting the transformation of fibroblasts to myofibroblasts. To gain new insights into the transcriptional programs involved, we profiled human fetal lung fibroblast global gene expression in response to TGF-beta1 up to 24 hours using oligonucleotide microarrays. In this report, we present data for 146 genes that were up-regulated at least twofold at two time points. These genes group into several major functional categories, including genes involved in cytoskeletal reorganization (n = 30), matrix formation (n = 25), metabolism and protein biosynthesis (n = 27), cell signaling (n = 21), proliferation and survival (n = 13), gene transcription (n = 9), and of uncertain function (n = 21). For 80 of these genes, this is the first report that they are TGF-beta1-responsive. The early induction of two members of the inhibitor of differentiation (ID) family of transcriptional regulators, ID1 and ID3, was followed by the up-regulation of a number of genes that are usually expressed by highly differentiated smooth muscle cells, including smooth muscle myosin heavy chain, basic calponin, and smoothelin. These findings were confirmed at the protein level for primary adult lung fibroblasts. ID1 further behaved like a typical immediate-early gene and, unlike ID3, was expressed and induced at the protein level. Immunohistochemical analysis showed that ID1 was highly expressed by (myo)fibroblasts within fibrotic foci in experimentally induced pulmonary fibrosis. ID1 acts as a dominant-negative antagonist of basic helix-loop-helix transcription factors that drive cell lineage commitment and differentiation. These findings have important implications for our understanding of fibroblast transcriptional programming in response to TGF-beta1 during development, oncogenesis, tissue repair, and fibrosis.


Biochemical and Biophysical Research Communications | 1992

Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-α is mediated by lipoxygenase metabolites of arachidonic acid

David J. Chang; Gordon M. Ringold; Renu A. Heller

The signalling pathways utilized by tumor necrosis factor-a (TNF) to elicit its actions have been examined in TA1 adipogenic cells. A role for lipoxygenase metabolites of arachidonic acid as mediators of TNF action in the induction of c-fos has been described. In this paper we report that acute cytotoxicity elicited by TNF, in the presence of cycloheximide (CHX), also utilizes this pathway since inhibitors of lipoxygenase action fully prevent TNF/CHX killing of several cell lines. Our data reveal that TNF induction of manganous superoxide dismutase (MnSOD) is also dependent upon lipoxygenase activity. Radical scavengers such as NAC and PDTC prevent TNF/CHX-induced cell killing and reduce MnSOD induction by TNF. Therefore, cell death by TNF/CHX treatment occurs via a pathway in which lipoxygenase products directly or indirectly operate via the generation of superoxide anions.


Genome Biology | 2001

Distinct gene expression profiles of human type 1 and type 2 T helper cells

Heli Hämäläinen; Hua Zhou; William Chou; Hideki Hashizume; Renu A. Heller; Riitta Lahesmaa

BackgroundThe development and activation of CD4+ helper T cell (Th) subsets with distinct patterns of unbalanced production of cytokines play an important part in infectious, allergic and autoimmune diseases. Human neonatal cord blood CD4+ Th cells can be polarized into type 1 or type 2-like effector cells in vitro by culturing them in the presence of interleukin (IL)-12 or IL-4, respectively. We have exploited this experimental system to identify marker genes that are differentially expressed by polarized Th1 and Th2 cells. An oligonucleotide microarray specifically designed to screen for inflammation-related candidate genes was used and the differential expression was further validated with a quantitative real-time RT-PCR method.ResultsIn addition to the previously described marker genes of Th cells, we report subtle changes in the expression of several other genes that represent growth factors, receptors and other signaling molecules in polarized Th1 and Th2 cell subsets. Additionally, we describe a novel set of genes as Th1/Th2 differentiation markers for cells activated by anti-CD3 and anti-CD28 antibodies.ConclusionsThis study demonstrates the power of the targeted use of microarrays in combination with quantitative real-time RT-PCR in identifying and validating new marker genes for gene expression studies.


Biochemical and Biophysical Research Communications | 1973

Solubilization and partial purification of hepatic 3-hydroxy-3-methylglutaryl coenzyme a reductase☆

Renu A. Heller; R. Gordon Gould

Abstract This paper describes an effective method for the solubilization of microsomal HMG-CoA reductase from rat liver. Exposing the microsomes to a freeze-thaw treatment solubilized 80% of the microsomal reductase activity. Subsequently, a 25-fold purification has led to an enzyme preparation with a specific activity of 10–14 nmoles MVA per min per mg of protein and an increased stability.


Biochimica et Biophysica Acta | 1975

Prevention of cold inactivation of 3-hydroxy-3-methylglutaryl coenzyme a reductase by NADPH

Renu A. Heller; R. Gordon Gould

Solubilized 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34) from rat liver microsomes has been reported to be reversibly inactivated by temperatures below 19 degrees C. Cold inactivation has now been found to be completely prevented by NADPH and by NADP+ at a concentration of 3 mM. NADPH, however, was more active than NADP+ at lower concentrations and prevented 50% of the cold inactivation at 0.2 mM, whereas a 1.1 mM NADPH+ without effect and the substrate 3-hydroxy-3-methylglutaryl coenzyme A prevented only 30% of the cold inactivation at a concentration 50 times greater than the Km value.


Biochimica et Biophysica Acta | 1977

Activation of purified 3-hydroxy-3-methylglutaryl-CoA reductase by phospholipids.

Charles B. Berde; Renu A. Heller; Robert D. Simoni

3-Hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), the enzyme that catalyzes the rate-limiting step in cholesterol biosynthesis, has been purified by two previously reported procedures. Enzyme purified by the method of Heller, R. and Shrewsbury, M. (1976) J. Biol. Chem. 251, 3815-3822) shows up to 3-fold enhancement of activity by various types of lipid dispersions while the enzyme purified by the procedure of Tormanen et al. ((1976) Biochem. Biophys. Res. Commun. 68, 754-762) shows no activation. These results suggest that interaction with microsomal membrane lipids may be important in determining the activity of this enzyme. Analysis of bound lipid showed that enzyme prepared by the procedure of Tormanen contained at last 50 times as much phospholipid on a weight basis as enzyme prepared by Heller and Shrewsbury. Analysis of both preparations by gel-electrophoresis indicates that enzyme activities of the two comigrate, but in neither case does activity coincide with the major protein species.


Annals of the New York Academy of Sciences | 2006

Use of oligonucleotide arrays to analyze drug toxicity.

Naftali Kaminski; John Allard; Renu A. Heller

Abstract: The advent of oligonucleotide arrays allows the simultaneous analysis of the expression of thousands of genes. This powerful technology, highly dependent on advanced analysis tools, can transform the level of information currently available on the mechanisms underlying drug‐related toxicity. It is now possible to analyze the global transcriptional response to a drug and determine the global pathways associated with the effects of this agent. This analysis can be performed on samples from patients that developed a toxic effect, on cells exposed to the toxic agent, and in animal models of toxicity. Especially useful is the comparison of transcriptional responses in animals susceptible to drug‐induced disease with those of genetically modified animals that are resistant to this effect. This analytic strategy allows the delineation of specific mechanisms relevant and specific to drug‐induced toxicity and thus might lead to novel therapeutic interventions in these toxic reactions.


Biochemical and Biophysical Research Communications | 1982

Development of monoclonal antibodies to 3-hydroxy-3-methylglutaryl-coenzyme A reductase

Renu A. Heller; Pamela Hoy; Patricia P. Jones

Abstract This report describes the development of a series of monoclonal antibodies to rat liver 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR). Sera from hybridoma tumor-bearing mice were used to remove and characterize HMGR activity from a mixture of rat liver proteins. Two IgG 2 monoclonal antibodies removed separately greater than 80% HMGR activity while non-immune mouse or negative hybridoma-derived sera were ineffective. Radiolabeled immunoprecipitates of enzyme preparations resolved in one- and two-dimensional SDS-PAGE showed two predominant subunits at M r 52,000 and 54,000. Our results indicate that in these preparations of rat liver proteins HMGR exists as a heteropolymer with at least two distinct subunits of different molecular weights.


Proceedings of the National Academy of Sciences of the United States of America | 1996

Parallel human genome analysis: microarray-based expression monitoring of 1000 genes

Mark Schena; Dari Shalon; Renu A. Heller; Andrew Chai; Patrick O. Brown; Ronald W. Davis

Collaboration


Dive into the Renu A. Heller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge