Renu Khanna-Chopra
Indian Agricultural Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renu Khanna-Chopra.
Protoplasma | 2012
Renu Khanna-Chopra
Leaf senescence is a genetically programmed decline in various cellular processes including photosynthesis and involves the hydrolysis of macromolecules such as proteins, lipids, etc. It is governed by the developmental age and is induced or enhanced by environmental stresses such as drought, heat, salinity and others. Internal factors such as reproductive structures also influence the rate of leaf senescence. Reactive oxygen species (ROS) generation is one of the earliest responses of plant cells under abiotic stresses and senescence. Chloroplasts are the main targets of ROS-linked damage during various environmental stresses and natural senescence as ROS detoxification systems decline with age. Plants adapt to environmental stresses through the process of acclimation, which involves less ROS production coupled with an efficient antioxidant defence. Chloroplasts are a major site of protein degradation, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is rapidly and selectively degraded during senescence and stress. The process of protein degradation is initiated by ROS and involves the action of proteolytic enzymes such as cysteine and serine proteases. The mechanism of Rubisco degradation still remains to be elucidated. The molecular understanding of leaf senescence was achieved through the characterization of senescence-associated genes and various senescence mutants of Arabidopsis, which is a suitable model plant showing monocarpic senescence. The regulation of senescence involves many regulatory elements composed of positive and negative elements to fine-tune the initiation and progression of senescence. This review gives an overview on chloroplast protein degradation during leaf senescence and abiotic stresses and also highlights the role of ROS management in both processes.
Protoplasma | 2010
Devarshi S. Selote; Renu Khanna-Chopra
Wheat (Triticum aestivum L.) seedlings of a drought-resistant cv. C306 were subjected to severe water deficit directly or through stress cycles of increasing intensity with intermittent recovery periods. The antioxidant defense in terms of redox metabolites and enzymes in root cells and mitochondria was examined in relation to membrane damage. Acclimated seedlings exhibited higher relative water content and were able to limit the accumulation of H2O2 and membrane damage during subsequent severe water stress conditions. This was due to systematic up-regulation of superoxide dismutase, ascorbate peroxidase (APX), catalase, peroxidases, and ascorbate–glutathione cycle components at both the whole cell level as well as in mitochondria. In contrast, direct exposure of severe water stress to non-acclimated seedlings caused greater water loss, excessive accumulation of H2O2 followed by elevated lipid peroxidation due to the poor antioxidant enzyme response particularly of APX, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and ascorbate–glutathione redox balance. Mitochondrial antioxidant defense was found to be better than the cellular defense in non-acclimated roots. Termination of stress followed by rewatering leads to a rapid enhancement in all the antioxidant defense components in non-acclimated roots, which suggested that the excess levels of H2O2 during severe water stress conditions might have inhibited or down-regulated the antioxidant enzymes. Hence, drought acclimation conferred enhanced tolerance toward oxidative stress in the root tissue of wheat seedlings due to both reactive oxygen species restriction and well-coordinated induction of antioxidant defense.
Euphytica | 1999
Renu Khanna-Chopra; C. Viswanathan
Wheat production is often limited by continual or terminal heat stress. The current study was aimed at the characterization of wild relatives and cultivated Triticum species for their heat tolerance in yield and its analysis in relation to yield components which confer yield stability at the three ploidy levels. Thirty-two non-cultivated and cultivated genotypes belonging to diploid, tetraploid and hexaploid wheat species were evaluated for heat stress tolerance in the field under full irrigation. Wheat species were sown in the field(New Delhi, India; 77°12′E, 28°40′N, 228.6 m m.s.l) at two dates of sowing, November (normal) and January (late Sowing) during winter seasons of 1994–95 and 1995–96. The late sown crop experienced 3°C warmer temperatures than that of the normal sown crop. Wide variability was observed for grain yield stability under heat stress, as the heat susceptibility index (S) ranged from 0.13 to 2.08. Hexaploidy conferred the productive and adaptive advantages as it combined high yield and stability when compared to the tetraploid and diploid groups. However within each ploidy group wide variation was observed for heat tolerance. T. aestivum cv C306 & HI1136, T. dicoccoides, T. monococcum acc. BSP1 and Ae. speltoides ssp. liqustica were highly heat tolerant in their grain yield. Stability in grain no. m- 2 conferred yield stability in all three ploidy levels, although grain weight stability also contributed to yield stability in moderately stable T. turgidum and T. sphaerococcum under heat stress. Higher biomass and grain no. m-2 are the two important traits which could be considered potential selection criteria for yield under heat stress. Of the two components of grain no. m-2, stability in spike no. m-2could be considered more important trait than grain no. spike-1. Since wide variation for heat tolerance of all the yield components are available among the wheat species, these species can be used for improving specific yield components of cultivated wheat.
The Journal of Agricultural Science | 1981
Suresh K. Sinha; Pramod K. Aggarwal; G. S. Chaturvedi; K. R. Koundal; Renu Khanna-Chopra
The Indian subcontinent has witnessed a spectacular improvement in yield of wheat during the past decade (Rao, 1978). This is reflected in the improvement of the average national yields as well as of those regions where wheat is grown as an irrigated crop (Sinha & Aggarwal, 1981). However, after the release of the double dwarf variety Kalyansona, only marginal improvement in yield has occurred in recent years. Despite this, the semi-dwarf character continues to be considered a major factor for improvement of wheat. Asana & Chattopadhyay (1970), Konar & Asana (1975), and Wattal & Asana (1976) observed no significant difference in yield between tall and semi-dwarf (medium tall) varieties in pot culture experiments where lodging was prevented and competition was partly reduced. They ascribed prevention from lodging and improvement in the ratio of grain to total above-ground dry matter as major advantages in the modern varieties. Somewhat similar conclusions have recently been drawn by Austin et al. (1980). However, a detailed comparison of various physiological and biochemical characters lias not been made to determine whether any advance has occurred in basic processes such as photosynthesis and nitrogen assimilation. The present study was an effort in this direction.
Photosynthetica | 2009
S. Chauhan; S. Srivalli; A. R. Nautiyal; Renu Khanna-Chopra
High temperature is a common constraint during anthesis and grain-filling stages of wheat leading to huge losses in yield. In order to understand the mechanism of heat tolerance during monocarpic senescence, the present study was carried out under field conditions by allowing two well characterized Triticum aestivum L. cultivars differing in heat tolerance, Hindi62 (heat-tolerant) and PBW343 (heat-susceptible), to suffer maximum heat stress under late sown conditions. Senescence was characterized by measuring photosynthesis related processes and endoproteolytic activity during non-stress environment (NSE) as well as heat-stress environment (HSE). There was a faster rate of senescence under HSE in both the genotypes. Hindi62, having pale yellow flag leaf with larger area, maintained cooler canopy under high temperatures than PBW343. The tolerance for high temperature in Hindi62 was clearly evident in terms of slower green-leaf area degradation, higher stomatal conductance, higher stability in maximum PSII efficiency, Rubisco activity and Rubisco content than PBW343. Both the genotypes exhibited lower endopeptidase activity under HSE as compared to NSE and this difference was more apparent in Hindi62. Serine proteases are the predominant proteases responsible for protein degradation under NSE as well as HSE. Flag leaf of both the genotypes exhibited high-molecular-mass endoproteases (78 kDa and 67 kDa) isoforms up to full grain maturity which were inhibited by specific serine protease inhibitor in both the environments. In conclusion, the heat-tolerant Hindi62 exhibited a slower rate of senescence than the heat-susceptible PBW343 during HSE, which may contribute towards heat stability.
Archive | 1984
David W. Lawlor; Renu Khanna-Chopra
Photosynthesis decreases with water stress because of stomatal closure and damage to the photosynthetic apparatus (Lawlor 1976, 1979). Disruption of energy linked processes in the thylakoids e.g. photosystem II, electron transport and/or photophosphorylation may be the cause (Newton et al 1981, Boyer, Younis, 1983). Here we show that stress increases the ratio of reductant (pyridine nucleotides) to ATP content, and of 02 evolution to C02 assimilation. These’observations are related to previously observed (Lawlor, Fock, 1977a, 1977b) changes in compensation concentration, respiration and assimilation products.
Photosynthetica | 2001
B. Srivalli; Sudhakar Bharti; Renu Khanna-Chopra
Characterisation of proteases degrading ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC: 4.1.1.39) was studied in the cowpea leaf during monocarpic senescence 3 and 9 d after flowering (DAF), representing early and mid pod fill. The stage at 3 DAF coincided with decrease in the metabolic parameters characterising senescence, i.e., contents of total soluble proteins, RuBPCO, and leaf nitrogen. At 9 DAF, there was a decline in total soluble proteins and an appearance of a 48 kDa cysteine protease. Characterisation of the proteases was done using specific inhibitors. Subcellular localisation at 3 DAF was studied by following the degradation of RuBPCO large subunit (LSU) in the vacuole lysates using immunoblot analyses. Cysteine proteases played a predominant role in the degradation of RuBPCO LSU at the crude extract level. At 9 DAF, expression of cysteine protease isoforms was monitored using polyclonal antibodies against papain and two polypeptides of molecular masses 48 and 35 kDa were observed in the vacuole lysates. We confirmed thus the predominance of cysteine proteases in the vacuoles during different stages of pod development in cowpea leaf.
The Journal of Agricultural Science | 1999
D. Gangadhar Rao; Renu Khanna-Chopra; Suresh K. Sinha
Sorghum hybrids are generally considered to be drought tolerant based on their yield performance in multi-locational trials. The present study was undertaken to test this hypothesis. A short duration hybrid, CSH-6, a long duration hybrid, CSH-9, their common male parent and both female parents were evaluated in the field in India under both rainfed and irrigated conditions during the rainy seasons of 1986 and 1987. Due to the low rainfall received in these years, the unirrigated treatments experienced severe water stress during the vegetative and post-anthesis periods. The hybrids produced more leaf area and dry matter than their parents even under water stress. The values for the physiological traits examined either resembled those of one of their parents or were intermediate between them. The hybrid CSH-6 produced more grain than its female parent under rainfed conditions but, due to the severe water stress, neither CSH-9 nor its parents exhibited panicle emergence. The results suggest that crop phenology is very important for the production of grain yield under severe water stress. Given knowledge of rainfall characteristics and probable periods of drought within specific regions, it should be possible to breed phenologically and physiologically adapted hybrids for specific environments.
Physiology and Molecular Biology of Plants | 2014
Vimal Kumar Semwal; Bhupinder Singh; Renu Khanna-Chopra
Reproductive sinks regulate monocarpic senescence in crop plants. Monocarpic senescence was studied in wheat fertile (cv. HW 2041) and its isonuclear cytoplasmic male sterile (CMS) line. CMS plants exhibited slower rate of senescence accompanied by longer green leaf area duration and slower deceleration in chlorophyll, protein content, PN and rubisco content coupled with lower protease activities than fertile (F) plants. CMS plants also exhibited lower ROS levels and less membrane damage than F plants. CMS plants maintained better antioxidant defense, less oxidative damage in chloroplast and higher transcript levels of both rbcL and rbcS genes during senescence than F plants. F plants exhibited early induction and higher expression of SAGs like serine and cysteine proteases, glutamine synthetases GS1 and GS2, WRKY53 transcription factor and decline in transcript levels of CAT1 and CAT2 genes than CMS plants. Hence, using genetically fertile and its CMS line of wheat it is confirmed that delayed senescence in the absence of reproductive sinks is linked with slower protein oxidation, rubisco degradation and delayed activation of SAGs. Better antioxidant defense in chloroplasts at later stages of senescence was able to mitigate the deleterious effects of ROS in CMS plants. We propose that delayed increase in ROS in cytoplasmic male sterile wheat plants resulted in delayed activation of WRKY53, SAGs and the associated biochemical changes than fertile plants.
Advances in irrigation | 1985
Suresh K. Sinha; Pramod K. Aggarwal; Renu Khanna-Chopra
Irrigation has been practiced in India since ancient times. A major change required in irrigation development in India is to make it an instrument of high production rather than mere protection, as it has been until recently. The Indian Council of Agricultural Research is responsible for developing appropriate recommendations for crop management and production, including irrigation scheduling. The effect of irrigation on crop yield was studied in wheat, rice, sorghum, and other cereals, pulses and oilseeds. In general, the irrigation projects in areas where rainfall is 1000 mm annually or more have poor performance. In drier regions where total rainfall is between 500 and 700 mm annually, irrigation has been successful. Water for the recommended number of irrigation projects, based on the experiments conducted at Research Farms, is not available for many crops in farmers fields. In regions where adequate provision for water has been made, other inputs are not available in required amounts. The effects of irrigation might be further improved if the appropriate stage for irrigation and fertilizer application could both be used. To meet increased food demands by the year 2000, better management of the existing water resources and greater input of fertilizers, pesticides, and improved seeds will be required.