Renukadevi Patil
University of Tennessee Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renukadevi Patil.
Future Medicinal Chemistry | 2012
Shivaputra Patil; Renukadevi Patil; Duane D. Miller
Agents that interfere with tubulin function have a broad anti-tumor spectrum and they represent one of the most significant classes of anticancer agents. In the past few years, several small synthetic molecules that have an indole nucleus as a core structure have been identified as tubulin inhibitors. Among these, several aroylindoles, arylthioindoles, diarylindoles and indolylglyoxyamides have shown good inhibition towards the tubulin polymerization. This article reviews the synthesis, biological activities and SARs of these main classes of indoles. Brief mention has also been made about the fused indole analogs as tubulin inhibitors.
Blood | 2014
Raphael Leblanc; Sue Chin Lee; Marion David; Jean Claude Bordet; Derek D. Norman; Renukadevi Patil; Duane D. Miller; Debashish Sahay; Johnny Ribeiro; Philippe Clézardin; Gabor Tigyi; Olivier Peyruchaud
Autotaxin (ATX), through its lysophospholipase D activity controls physiological levels of lysophosphatidic acid (LPA) in blood. ATX is overexpressed in multiple types of cancers, and together with LPA generated during platelet activation promotes skeletal metastasis of breast cancer. However, the pathophysiological sequelae of regulated interactions between circulating LPA, ATX, and platelets remain undefined in cancer. In this study, we show that ATX is stored in α-granules of resting human platelets and released upon tumor cell-induced platelet aggregation, leading to the production of LPA. Our in vitro and in vivo experiments using human breast cancer cells that do not express ATX (MDA-MB-231 and MDA-B02) demonstrate that nontumoral ATX controls the early stage of bone colonization by tumor cells. Moreover, expression of a dominant negative integrin αvβ3-Δ744 or treatment with the anti-human αvβ3 monoclonal antibody LM609, completely abolished binding of ATX to tumor cells, demonstrating the requirement of a fully active integrin αvβ3 in this process. The present results establish a new mechanism for platelet contribution to LPA-dependent metastasis of breast cancer cells, and demonstrate the therapeutic potential of disrupting the binding of nontumor-derived ATX with the tumor cells for the prevention of metastasis.
Future Medicinal Chemistry | 2013
Shivaputra Patil; Renukadevi Patil; Lawrence M. Pfeffer; Duane D. Miller
Cancer is a major devastating disease, and is a leading cause of death worldwide. Despite the progress in cancer treatment, cancer mortality rate remains high. Therefore, the discovery and development of improved anticancer drugs to treat cancer are needed. 4H-chromenes have strong cytotoxicity against a panel of human cancer cell lines involving pathways that include microtubule depolarization and tumor vasculature disruption. A chromene analog, Crolibulin™ (EPC2407) is currently in Phase I/II clinical trials for the treatment of advanced solid tumors. This article reviews the general synthesis, biological activities and structure-activity relatinships of different classes of chromenes.
Biochemical Society Transactions | 2012
Mari Gotoh; Yuko Fujiwara; Junming Yue; Jianxiong Liu; Sue-Chin Lee; James I. Fells; Ayako Uchiyama; Kimiko Murakami-Murofushi; Stephen J. Kennel; Jonathan S. Wall; Renukadevi Patil; Renuka Gupte; Louisa Balazs; Duane D. Miller; Gabor Tigyi
LPA (lysophosphatidic acid, 1-acyl-2-hydroxy-sn-glycero-3-phosphate), is a growth factor-like lipid mediator that regulates many cellular functions, many of which are unique to malignantly transformed cells. The simple chemical structure of LPA and its profound effects in cancer cells has attracted the attention of the cancer therapeutics field and drives the development of therapeutics based on the LPA scaffold. In biological fluids, LPA is generated by ATX (autotaxin), a lysophospholipase D that cleaves the choline/serine headgroup from lysophosphatidylcholine and lysophosphatidylserine to generate LPA. In the present article, we review some of the key findings that make the ATX-LPA signalling axis an emerging target for cancer therapy.
ChemMedChem | 2011
Renuka Gupte; Renukadevi Patil; Jianxiong Liu; Yaohong Wang; Sue C. Lee; Yuko Fujiwara; James I. Fells; Alyssa L. Bolen; Karin Emmons-Thompson; C. Ryan Yates; Anjaih Siddam; Nattapon Panupinthu; Truc Chi T. Pham; Daniel L. Baker; Gordon B. Mills; Gabor Tigyi; Duane D. Miller
Autotaxin (ATX, NPP2) is a member of the nucleotide pyrophosphate phosphodiesterase enzyme family. ATX catalyzes the hydrolytic cleavage of lysophosphatidylcholine (LPC) by lysophospholipase D activity, which leads to generation of the growth‐factor‐like lipid mediator lysophosphatidic acid (LPA). ATX is highly upregulated in metastatic and chemotherapy‐resistant carcinomas and represents a potential target to mediate cancer invasion and metastasis. Herein we report the synthesis and pharmacological characterization of ATX inhibitors based on the 4‐tetradecanoylaminobenzylphosphonic acid scaffold, which was previously found to lack sufficient stability in cellular systems. The new 4‐substituted benzylphosphonic acid and 6‐substituted naphthalen‐2‐ylmethylphosphonic acid analogues block ATX activity with Ki values in the low micromolar to nanomolar range against FS3, LPC, and nucleotide substrates through a mixed‐mode inhibition mechanism. None of the compounds tested inhibit the activity of related enzymes (NPP6 and NPP7). In addition, the compounds were evaluated as agonists or antagonists of seven LPA receptor (LPAR) subtypes. Analogues 22 and 30 b, the two most potent ATX inhibitors, inhibit the invasion of MM1 hepatoma cells across murine mesothelial and human vascular endothelial monolayers in vitro in a dose‐dependent manner. The average terminal half‐life for compound 22 is 10±5.4 h and it causes a long‐lasting decrease in plasma LPA levels. Compounds 22 and 30 b significantly decrease lung metastasis of B16‐F10 syngeneic mouse melanoma in a post‐inoculation treatment paradigm. The 4‐substituted benzylphosphonic acids and 6‐substituted naphthalen‐2‐ylmethylphosphonic acids described herein represent new lead compounds that effectively inhibit the ATX–LPA–LPAR axis both in vitro and in vivo.
Expert Opinion on Therapeutic Patents | 2005
Michael L. Mohler; Vipin A. Nair; Dong Jin Hwang; Igor M. Rakov; Renukadevi Patil; Duane D. Miller
The androgen receptor (AR) is a nuclear hormone receptor that, upon binding to testosterone, dihydrotestosterone (DHT) and other endogenous androgens, supports the development, growth and maintenance of masculine features through activation of anabolic and androgenic metabolism. The AR has been demonstrated to be a productive therapeutic target. AR ligands in clinical practice include androgenic steroids, antiandrogenic steroids and antiandrogenic nonsteroidals. Of primary importance for this review are nonsteroidal selective AR modulators (SARMs) that have tissue-specific agonist and/or antagonist activities. The AR has a myriad of peripheral and central functions that can be modulated in a pleiotropic and tissue-specific fashion using the increasingly diverse collection of SARMs discussed herein. This suggests that SARMs will have a high level of clinical utility for a wide variety of health conditions. The patent literature focusing on SARMs is reviewed and reveals multiple chemical classes in various stages of preclinical and clinical development. Emphasis is placed on selected disease states for which SARMs show potential for therapeutic use in clinical practice.
Bioorganic & Medicinal Chemistry Letters | 2012
Shivaputra Patil; Jin Wang; Xiaochen S. Li; Jianjun Chen; Terreia S. Jones; Amira Hosni-Ahmed; Renukadevi Patil; William Seibel; Wei Li; Duane D. Miller
As a continuation of our efforts to discover and develop small molecules as anticancer agents, we identified GRI-394837 as an initial hit from similarity search on RGD and its analogs. Based on GRI-394837, we designed and synthesized a focused set of novel chromenes (4a-e) in a single step using microwave method. All five compounds showed activity in the nanomolar range (IC(50): 7.4-640 nM) in two melanoma, three prostate and four glioma cancer cell lines. The chromene 4e is active against all the cell lines and particularly against the A172 human glioma cell line (IC(50): 7.4 nM). Interestingly, in vitro tubulin polymerization assay shows 4e to be a weak tubulin polymerization inhibitor but it shows very strong cytotoxicity in cellular assays, therefore there must be additional unknown mechanism(s) for the anticancer activity. Additionally, the strong antiproliferative activity was verified by one of the selected chromene (4a) by the NCI 60 cell line screen. These results strongly suggest that the novel chromenes could be further developed as a potential therapeutic agent for a variety of aggressive cancers.
Future Medicinal Chemistry | 2015
Shivaputra Patil; Renukadevi Patil; Rangappa S. Keri; Srinivasa Budagumpi; Geetha R. Balakrishna; Matthias Tacke
Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.
Molecular Cancer Research | 2015
Sue Chin Lee; Yuko Fujiwara; Jianxiong Liu; Junming Yue; Yoshibumi Shimizu; Derek D. Norman; Yaohong Wang; Ryoko Tsukahara; Erzsebet Szabo; Renukadevi Patil; Souvik Banerjee; Duane D. Miller; Louisa Balazs; Manik C. Ghosh; Christopher M. Waters; Tamas Oravecz; Gabor Tigyi
Autotaxin (ENPP2/ATX) and lysophosphatidic acid (LPA) receptors represent two key players in regulating cancer progression. The present study sought to understand the mechanistic role of LPA G protein–coupled receptors (GPCR), not only in the tumor cells but also in stromal cells of the tumor microenvironment. B16F10 melanoma cells predominantly express LPA5 and LPA2 receptors but lack LPA1. LPA dose dependently inhibited invasion of cells across a Matrigel layer. RNAi-mediated knockdown of LPA5 relieved the inhibitory effect of LPA on invasion without affecting basal invasion. This suggests that LPA5 exerts an anti-invasive action in melanoma cells in response to LPA. In addition, both siRNA-mediated knockdown and pharmacologic inhibition of LPA2 reduced the basal rate invasion. Unexpectedly, when probing the role of this GPCR in host tissues, it was found that the incidence of melanoma-derived lung metastasis was greatly reduced in LPA5 knockout (KO) mice compared with wild-type (WT) mice. LPA1-KO but not LPA2-KO mice also showed diminished melanoma-derived lung metastasis, suggesting that host LPA1 and LPA5 receptors play critical roles in the seeding of metastasis. The decrease in tumor cell residence in the lungs of LPA1-KO and LPA5-KO animals was apparent 24 hours after injection. However, KO of LPA1, LPA2, or LPA5 did not affect the subcutaneous growth of melanoma tumors. Implications: These findings suggest that tumor and stromal LPA receptors, in particular LPA1 and LPA5, play different roles in invasion and the seeding of metastasis. Mol Cancer Res; 13(1); 174–85. ©2014 AACR.
Expert Opinion on Drug Discovery | 2013
Shivaputra Patil; Amira Hosni-Ahmed; Terreia S. Jones; Renukadevi Patil; Lawrence M. Pfeffer; Duane D. Miller
Introduction: Gliomas are considered the most malignant form of brain tumors, and ranked among the most aggressive human cancers. Despite advance standard therapy the prognosis for patients with gliomas remains poor. Chemotherapy has played an important role as an adjuvant in treating gliomas. The efficacy of the chemotherapeutic drug is limited due to poor drug delivery and the inherent chemo- and radio-resistance. Challenges of the brain cancer therapy in clinical settings are; i) to overcome the chemo- and radio-resistance, ii) to improve drug delivery to tumors and iii) the development of effective drug screening procedures. Areas covered: In this review, the authors discuss clinically important chemotherapeutic agents used for treating malignant gliomas along with novel drug design approaches. The authors, furthermore, discuss the in vitro and in vivo drug screening procedures for the development of novel drug candidates. Expert opinion: The development of novel and highly potent chemotherapeutic agents for both glioma and glioma stem cells (GSCs) is highly important for future brain cancer research. Thus, research efforts should be directed towards developing innovative molecularly targeted antiglioma agents in order to reduce the toxicity and drug resistance which are associated with current forms of therapy. Development of novel pre-clinical drug screening procedures is also very critical for the overall success of brain cancer therapies in clinical settings.